Spaces:
Running
on
Zero
Running
on
Zero
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer | |
| from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, OmniGenPipeline, OmniGenTransformer2DModel | |
| from diffusers.utils.testing_utils import ( | |
| numpy_cosine_similarity_distance, | |
| require_torch_gpu, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| class OmniGenPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
| pipeline_class = OmniGenPipeline | |
| params = frozenset(["prompt", "guidance_scale"]) | |
| batch_params = frozenset(["prompt"]) | |
| test_layerwise_casting = True | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = OmniGenTransformer2DModel( | |
| hidden_size=16, | |
| num_attention_heads=4, | |
| num_key_value_heads=4, | |
| intermediate_size=32, | |
| num_layers=1, | |
| in_channels=4, | |
| time_step_dim=4, | |
| rope_scaling={"long_factor": list(range(1, 3)), "short_factor": list(range(1, 3))}, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| sample_size=32, | |
| in_channels=3, | |
| out_channels=3, | |
| block_out_channels=(4, 4, 4, 4), | |
| layers_per_block=1, | |
| latent_channels=4, | |
| norm_num_groups=1, | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| ) | |
| scheduler = FlowMatchEulerDiscreteScheduler(invert_sigmas=True, num_train_timesteps=1) | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") | |
| components = { | |
| "transformer": transformer, | |
| "vae": vae, | |
| "scheduler": scheduler, | |
| "tokenizer": tokenizer, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 1, | |
| "guidance_scale": 3.0, | |
| "output_type": "np", | |
| "height": 16, | |
| "width": 16, | |
| } | |
| return inputs | |
| def test_inference(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| generated_image = pipe(**inputs).images[0] | |
| self.assertEqual(generated_image.shape, (16, 16, 3)) | |
| class OmniGenPipelineSlowTests(unittest.TestCase): | |
| pipeline_class = OmniGenPipeline | |
| repo_id = "shitao/OmniGen-v1-diffusers" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| return { | |
| "prompt": "A photo of a cat", | |
| "num_inference_steps": 2, | |
| "guidance_scale": 2.5, | |
| "output_type": "np", | |
| "generator": generator, | |
| } | |
| def test_omnigen_inference(self): | |
| pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) | |
| pipe.enable_model_cpu_offload() | |
| inputs = self.get_inputs(torch_device) | |
| image = pipe(**inputs).images[0] | |
| image_slice = image[0, :10, :10] | |
| expected_slice = np.array( | |
| [ | |
| [0.1783447, 0.16772744, 0.14339337], | |
| [0.17066911, 0.15521264, 0.13757327], | |
| [0.17072496, 0.15531206, 0.13524258], | |
| [0.16746324, 0.1564025, 0.13794944], | |
| [0.16490817, 0.15258026, 0.13697758], | |
| [0.16971767, 0.15826806, 0.13928896], | |
| [0.16782972, 0.15547255, 0.13783783], | |
| [0.16464645, 0.15281534, 0.13522372], | |
| [0.16535294, 0.15301755, 0.13526791], | |
| [0.16365296, 0.15092957, 0.13443318], | |
| ], | |
| dtype=np.float32, | |
| ) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
| assert max_diff < 1e-4 | |