Spaces:
Runtime error
Runtime error
| # YOLOX-OpenVINO in Python | |
| This tutorial includes a Python demo for OpenVINO, as well as some converted models. | |
| ### Download OpenVINO models. | |
| | Model | Parameters | GFLOPs | Test Size | mAP | Weights | | |
| |:------| :----: | :----: | :---: | :---: | :---: | | |
| | [YOLOX-Nano](../../../exps/default/nano.py) | 0.91M | 1.08 | 416x416 | 25.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_nano_openvino.tar.gz) | | |
| | [YOLOX-Tiny](../../../exps/default/yolox_tiny.py) | 5.06M | 6.45 | 416x416 |32.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_tiny_openvino.tar.gz) | | |
| | [YOLOX-S](../../../exps/default/yolox_s.py) | 9.0M | 26.8 | 640x640 |40.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s_openvino.tar.gz) | | |
| | [YOLOX-M](../../../exps/default/yolox_m.py) | 25.3M | 73.8 | 640x640 |47.2 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_m_openvino.tar.gz) | | |
| | [YOLOX-L](../../../exps/default/yolox_l.py) | 54.2M | 155.6 | 640x640 |50.1 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_l_openvino.tar.gz) | | |
| | [YOLOX-Darknet53](../../../exps/default/yolov3.py) | 63.72M | 185.3 | 640x640 |48.0 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_dark_openvino.tar.gz) | | |
| | [YOLOX-X](../../../exps/default/yolox_x.py) | 99.1M | 281.9 | 640x640 |51.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_x_openvino.tar.gz) | | |
| ## Install OpenVINO Toolkit | |
| Please visit [Openvino Homepage](https://docs.openvinotoolkit.org/latest/get_started_guides.html) for more details. | |
| ## Set up the Environment | |
| ### For Linux | |
| **Option1. Set up the environment tempororally. You need to run this command everytime you start a new shell window.** | |
| ```shell | |
| source /opt/intel/openvino_2021/bin/setupvars.sh | |
| ``` | |
| **Option2. Set up the environment permenantly.** | |
| *Step1.* For Linux: | |
| ```shell | |
| vim ~/.bashrc | |
| ``` | |
| *Step2.* Add the following line into your file: | |
| ```shell | |
| source /opt/intel/openvino_2021/bin/setupvars.sh | |
| ``` | |
| *Step3.* Save and exit the file, then run: | |
| ```shell | |
| source ~/.bashrc | |
| ``` | |
| ## Convert model | |
| 1. Export ONNX model | |
| Please refer to the [ONNX tutorial](https://github.com/Megvii-BaseDetection/YOLOX/demo/ONNXRuntime). **Note that you should set --opset to 10, otherwise your next step will fail.** | |
| 2. Convert ONNX to OpenVINO | |
| ``` shell | |
| cd <INSTSLL_DIR>/openvino_2021/deployment_tools/model_optimizer | |
| ``` | |
| Install requirements for convert tool | |
| ```shell | |
| sudo ./install_prerequisites/install_prerequisites_onnx.sh | |
| ``` | |
| Then convert model. | |
| ```shell | |
| python3 mo.py --input_model <ONNX_MODEL> --input_shape <INPUT_SHAPE> [--data_type FP16] | |
| ``` | |
| For example: | |
| ```shell | |
| python3 mo.py --input_model yolox.onnx --input_shape [1,3,640,640] --data_type FP16 --output_dir converted_output | |
| ``` | |
| ## Demo | |
| ### python | |
| ```shell | |
| python openvino_inference.py -m <XML_MODEL_PATH> -i <IMAGE_PATH> | |
| ``` | |
| or | |
| ```shell | |
| python openvino_inference.py -m <XML_MODEL_PATH> -i <IMAGE_PATH> -o <OUTPUT_DIR> -s <SCORE_THR> -d <DEVICE> | |
| ``` | |