Spaces:
Running
Running
File size: 22,985 Bytes
c724d0c 19a096b c724d0c 13ebb90 c724d0c 13ebb90 9ea3ad6 c724d0c 40bbd1a c724d0c 13ebb90 dd055bb c724d0c 19a096b 40bbd1a 3b9e413 40bbd1a 3b9e413 dd055bb 19a096b c724d0c 9ea3ad6 e0f6e27 19a096b e0f6e27 dd055bb 40bbd1a dd055bb 4642f4a 19a096b 40bbd1a 3b9e413 c724d0c dd055bb 40bbd1a c724d0c 40bbd1a dd055bb 19a096b e0f6e27 40bbd1a 19a096b c724d0c 40bbd1a c724d0c 3b9e413 c724d0c 19a096b c724d0c 3b9e413 19a096b 1102a75 3b9e413 1102a75 c724d0c dd055bb b678bb5 e0f6e27 b678bb5 1102a75 e0f6e27 9ea3ad6 e0f6e27 19a096b 9ea3ad6 19a096b c724d0c 40bbd1a c724d0c 40bbd1a b678bb5 40bbd1a dd055bb 9ea3ad6 dd055bb e0f6e27 1102a75 e0f6e27 1102a75 e0f6e27 1102a75 e0f6e27 1102a75 e0f6e27 3b9e413 19a096b dd055bb e0f6e27 dd055bb 19a096b dd055bb c724d0c 3b9e413 40bbd1a 19a096b 3b9e413 19a096b 3b9e413 19a096b 3b9e413 19a096b dd055bb 40bbd1a c724d0c 9ea3ad6 c724d0c b678bb5 c724d0c b678bb5 c724d0c 40bbd1a c724d0c 40bbd1a 9ea3ad6 40bbd1a c724d0c 40bbd1a c724d0c 40bbd1a c724d0c 9ea3ad6 40bbd1a c724d0c 40bbd1a 9ea3ad6 40bbd1a 19a096b c724d0c 19a096b 40bbd1a c724d0c 13ebb90 dd055bb 19a096b e0f6e27 4642f4a 19a096b 40bbd1a dd055bb 13ebb90 c724d0c b678bb5 19a096b dd055bb 19a096b dd055bb c724d0c dd055bb 9ea3ad6 c724d0c dd055bb c724d0c 40bbd1a 9ea3ad6 c724d0c dd055bb b678bb5 e0f6e27 40bbd1a 19a096b c724d0c 40bbd1a c724d0c 40bbd1a c724d0c 40bbd1a c724d0c 40bbd1a c724d0c 9ea3ad6 40bbd1a 9ea3ad6 c724d0c dd055bb c724d0c 40bbd1a c724d0c 13ebb90 dd055bb 13ebb90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
# -*- coding: utf-8 -*-
from __future__ import annotations
import os, time, uuid, logging, random
from typing import List, Optional, Dict, Any, Tuple
import numpy as np
import requests
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException, Query
from pydantic import BaseModel, Field
# Qdrant (optionnel si VECTOR_STORE=memory)
try:
from qdrant_client import QdrantClient
from qdrant_client.http.models import VectorParams, Distance, PointStruct
except Exception: # si non installé, on retombe en mémoire
QdrantClient = None
VectorParams = Distance = PointStruct = None
# ---------- logging ----------
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(name)s:%(message)s")
LOG = logging.getLogger("remote_indexer")
# ---------- ENV (config) ----------
# Choix du store: "qdrant" (par défaut) ou "memory"
VECTOR_STORE = os.getenv("VECTOR_STORE", "qdrant").strip().lower()
# Ordre des backends d'embeddings à essayer. Par défaut: DeepInfra, puis HF.
DEFAULT_BACKENDS = "deepinfra,hf"
EMB_BACKEND_ORDER = [s.strip().lower()
for s in os.getenv("EMB_BACKEND_ORDER", os.getenv("EMB_BACKEND", DEFAULT_BACKENDS)).split(",")
if s.strip()]
ALLOW_DI_AUTOFALLBACK = os.getenv("ALLOW_DI_AUTOFALLBACK", "true").lower() in ("1","true","yes","on")
# HF Inference API
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2").strip()
HF_API_URL_USER = os.getenv("HF_API_URL", "").strip()
HF_API_URL_PIPELINE = os.getenv("HF_API_URL_PIPELINE", "").strip()
HF_API_URL_MODELS = os.getenv("HF_API_URL_MODELS", "").strip()
if HF_API_URL_USER:
if "/pipeline" in HF_API_URL_USER:
HF_API_URL_PIPELINE = HF_API_URL_USER
else:
HF_API_URL_MODELS = HF_API_URL_USER
HF_URL_PIPELINE = (HF_API_URL_PIPELINE or f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}")
HF_URL_MODELS = (HF_API_URL_MODELS or f"https://api-inference.huggingface.co/models/{HF_MODEL}")
HF_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
HF_WAIT = os.getenv("HF_WAIT_FOR_MODEL", "true").lower() in ("1","true","yes","on")
HF_PIPELINE_FIRST = os.getenv("HF_PIPELINE_FIRST", "true").lower() in ("1","true","yes","on")
# DeepInfra (OpenAI-compatible embeddings)
DI_TOKEN = os.getenv("DEEPINFRA_API_KEY", "").strip()
DI_MODEL = os.getenv("DEEPINFRA_EMBED_MODEL", "BAAI/bge-m3").strip()
DI_URL = os.getenv("DEEPINFRA_EMBED_URL", "https://api.deepinfra.com/v1/openai/embeddings").strip()
DI_TIMEOUT = float(os.getenv("EMB_TIMEOUT_SEC", "120"))
# Retries embeddings
RETRY_MAX = int(os.getenv("EMB_RETRY_MAX", "6"))
RETRY_BASE_SEC = float(os.getenv("EMB_RETRY_BASE", "1.5"))
RETRY_JITTER = float(os.getenv("EMB_RETRY_JITTER", "0.35"))
# Qdrant
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333").strip()
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()
# Auth d’API du service (simple header)
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip()
LOG.info(f"Embeddings backend order = {EMB_BACKEND_ORDER}")
LOG.info(f"HF pipeline URL = {HF_URL_PIPELINE}")
LOG.info(f"HF models URL = {HF_URL_MODELS}")
LOG.info(f"VECTOR_STORE = {VECTOR_STORE}")
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
LOG.warning("HF_API_TOKEN manquant — tentatives HF échoueront.")
if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN:
LOG.warning("DEEPINFRA_API_KEY manquant — tentatives DeepInfra échoueront.")
# ---------- Vector store abstraction ----------
class VectorStoreBase:
def ensure_collection(self, name: str, dim: int): ...
def upsert(self, name: str, vectors: np.ndarray, payloads: List[dict]) -> int: ...
def search(self, name: str, query_vec: np.ndarray, limit: int):
"""return list of objects with .score and .payload"""
...
def wipe(self, name: str): ...
class MemoryHit:
def __init__(self, score: float, payload: dict):
self.score = score
self.payload = payload
class MemoryStore(VectorStoreBase):
"""Simple store en mémoire (cosine sur vecteurs normalisés). Persistance: vie du process."""
def __init__(self):
self.data: Dict[str, Dict[str, Any]] = {} # {col: {"dim": d, "vecs": np.ndarray [N,d], "payloads": List[dict]}}
LOG.warning("Vector store: MEMORY (fallback). Les données sont volatiles (perdues au restart).")
def ensure_collection(self, name: str, dim: int):
col = self.data.get(name)
if not col:
self.data[name] = {"dim": dim, "vecs": np.zeros((0, dim), dtype=np.float32), "payloads": []}
def upsert(self, name: str, vectors: np.ndarray, payloads: List[dict]) -> int:
self.ensure_collection(name, vectors.shape[1])
col = self.data[name]
if vectors.ndim != 2 or vectors.shape[1] != col["dim"]:
raise RuntimeError(f"MemoryStore: bad shape {vectors.shape}, expected (*,{col['dim']})")
col["vecs"] = np.vstack([col["vecs"], vectors.astype(np.float32)])
col["payloads"].extend(payloads)
return vectors.shape[0]
def search(self, name: str, query_vec: np.ndarray, limit: int):
col = self.data.get(name)
if not col or col["vecs"].shape[0] == 0:
return []
V = col["vecs"] # [N,d], déjà normalisés
q = query_vec.reshape(1, -1) # [1,d]
scores = (V @ q.T).ravel() # cos sim
idx = np.argsort(-scores)[:limit]
return [MemoryHit(float(scores[i]), col["payloads"][i]) for i in idx]
def wipe(self, name: str):
if name in self.data:
del self.data[name]
class QdrantStore(VectorStoreBase):
def __init__(self, url: str, api_key: Optional[str]):
if QdrantClient is None:
raise RuntimeError("qdrant-client non installé.")
self.client = QdrantClient(url=url, api_key=api_key if api_key else None)
# ping rapide
try:
_ = self.client.get_collections()
LOG.info("Connecté à Qdrant.")
except Exception as e:
raise RuntimeError(f"Connexion Qdrant impossible: {e}")
def ensure_collection(self, name: str, dim: int):
try:
self.client.get_collection(name); return
except Exception:
pass
self.client.create_collection(
collection_name=name,
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
)
def upsert(self, name: str, vectors: np.ndarray, payloads: List[dict]) -> int:
points = [
PointStruct(id=None, vector=v.tolist(), payload=payloads[i])
for i, v in enumerate(vectors)
]
self.client.upsert(collection_name=name, points=points)
return len(points)
def search(self, name: str, query_vec: np.ndarray, limit: int):
res = self.client.search(collection_name=name, query_vector=query_vec.tolist(), limit=limit)
return res
def wipe(self, name: str):
self.client.delete_collection(name)
# Sélection / auto-fallback du store
STORE: VectorStoreBase
def _init_store() -> VectorStoreBase:
prefer = VECTOR_STORE
if prefer == "memory":
return MemoryStore()
# prefer qdrant
try:
return QdrantStore(QDRANT_URL, QDRANT_API if QDRANT_API else None)
except Exception as e:
LOG.error(f"Qdrant indisponible ({e}) — fallback en mémoire.")
return MemoryStore()
STORE = _init_store()
# ---------- Pydantic ----------
class FileIn(BaseModel):
path: str
text: str
class IndexRequest(BaseModel):
project_id: str = Field(..., min_length=1)
files: List[FileIn]
chunk_size: int = 1200
overlap: int = 200
batch_size: int = 8
store_text: bool = True
class QueryRequest(BaseModel):
project_id: str
query: str
top_k: int = 6
# ---------- Jobs store ----------
JOBS: Dict[str, Dict[str, Any]] = {}
def _append_log(job_id: str, line: str):
job = JOBS.get(job_id)
if job: job["logs"].append(line)
def _set_status(job_id: str, status: str):
job = JOBS.get(job_id)
if job: job["status"] = status
def _auth(x_auth: Optional[str]):
if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
raise HTTPException(status_code=401, detail="Unauthorized")
# ---------- Helpers retry ----------
def _retry_sleep(attempt: int):
back = (RETRY_BASE_SEC ** attempt)
jitter = 1.0 + random.uniform(-RETRY_JITTER, RETRY_JITTER)
return max(0.25, back * jitter)
def _with_task_param(url: str, task: str = "feature-extraction") -> str:
return url + ("&" if "?" in url else "?") + f"task={task}"
# ---------- HF embeddings ----------
def _hf_http(url: str, payload: Dict[str, Any], headers_extra: Optional[Dict[str, str]] = None) -> Tuple[np.ndarray, int]:
if not HF_TOKEN:
raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
headers = {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json",
"Accept": "application/json",
}
if HF_WAIT:
payload.setdefault("options", {})["wait_for_model"] = True
headers["X-Wait-For-Model"] = "true"
headers["X-Use-Cache"] = "true"
if headers_extra:
headers.update(headers_extra)
r = requests.post(url, headers=headers, json=payload, timeout=HF_TIMEOUT)
size = int(r.headers.get("Content-Length", "0"))
if r.status_code >= 400:
LOG.error(f"HF error {r.status_code}: {r.text[:1000]}")
r.raise_for_status()
data = r.json()
arr = np.array(data, dtype=np.float32)
if arr.ndim == 3:
arr = arr.mean(axis=1)
elif arr.ndim == 1:
arr = arr.reshape(1, -1)
if arr.ndim != 2:
raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
arr = arr / norms
return arr.astype(np.float32), size
def _hf_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
payload: Dict[str, Any] = {"inputs": (batch if len(batch) > 1 else batch[0])}
urls = [HF_URL_PIPELINE, HF_URL_MODELS] if HF_PIPELINE_FIRST else [HF_URL_MODELS, HF_URL_PIPELINE]
last_exc: Optional[Exception] = None
for idx, url in enumerate(urls, 1):
try:
if "/models/" in url:
return _hf_http(url, payload, headers_extra={"X-Task": "feature-extraction"})
else:
return _hf_http(url, payload, headers_extra=None)
except requests.HTTPError as he:
code = he.response.status_code if he.response is not None else 0
body = he.response.text if he.response is not None else ""
last_exc = he
if code in (404, 405, 501) and idx < len(urls):
LOG.warning(f"HF endpoint {url} non dispo ({code}), fallback vers alternative ...")
continue
if "/models/" in url and "SentenceSimilarityPipeline" in (body or ""):
try:
forced_url = _with_task_param(url, "feature-extraction")
LOG.warning("HF MODELS a choisi Similarity -> retry avec %s + X-Task", forced_url)
return _hf_http(forced_url, payload, headers_extra={"X-Task": "feature-extraction"})
except Exception as he2:
last_exc = he2
raise
except Exception as e:
last_exc = e
raise
raise RuntimeError(f"HF: aucun endpoint utilisable ({last_exc})")
# ---------- DeepInfra embeddings ----------
def _di_post_embeddings_once(batch: List[str]) -> Tuple[np.ndarray, int]:
if not DI_TOKEN:
raise RuntimeError("DEEPINFRA_API_KEY manquant (backend=deepinfra).")
headers = {"Authorization": f"Bearer {DI_TOKEN}", "Content-Type": "application/json", "Accept": "application/json"}
payload = {"model": DI_MODEL, "input": batch}
r = requests.post(DI_URL, headers=headers, json=payload, timeout=DI_TIMEOUT)
size = int(r.headers.get("Content-Length", "0"))
if r.status_code >= 400:
LOG.error(f"DeepInfra error {r.status_code}: {r.text[:1000]}")
r.raise_for_status()
js = r.json()
data = js.get("data")
if not isinstance(data, list) or not data:
raise RuntimeError(f"DeepInfra embeddings: réponse invalide {js}")
embs = [d.get("embedding") for d in data]
arr = np.asarray(embs, dtype=np.float32)
if arr.ndim != 2:
raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
arr = arr / norms
return arr.astype(np.float32), size
# ---------- Retry orchestrator ----------
def _retry_sleep(attempt: int):
back = (RETRY_BASE_SEC ** attempt)
jitter = 1.0 + random.uniform(-RETRY_JITTER, RETRY_JITTER)
return max(0.25, back * jitter)
def _call_with_retries(func, batch: List[str], label: str, job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
last_exc = None
for attempt in range(RETRY_MAX):
try:
if job_id:
_append_log(job_id, f"{label}: try {attempt+1}/{RETRY_MAX} (batch={len(batch)})")
return func(batch)
except requests.HTTPError as he:
code = he.response.status_code if he.response is not None else "HTTP"
retriable = code in (429, 500, 502, 503, 504)
if not retriable:
raise
sleep_s = _retry_sleep(attempt)
msg = f"{label}: HTTP {code}, retry in {sleep_s:.1f}s"
LOG.warning(msg); _append_log(job_id, msg)
time.sleep(sleep_s)
last_exc = he
except Exception as e:
sleep_s = _retry_sleep(attempt)
msg = f"{label}: error {type(e).__name__}: {e}, retry in {sleep_s:.1f}s"
LOG.warning(msg); _append_log(job_id, msg)
time.sleep(sleep_s)
last_exc = e
raise RuntimeError(f"{label}: retries exhausted: {last_exc}")
def _post_embeddings(batch: List[str], job_id: Optional[str] = None) -> Tuple[np.ndarray, int]:
last_err = None
similarity_misroute = False
for b in EMB_BACKEND_ORDER:
if b == "hf":
try:
return _call_with_retries(_hf_post_embeddings_once, batch, "HF", job_id)
except requests.HTTPError as he:
body = he.response.text if getattr(he, "response", None) is not None else ""
if "SentenceSimilarityPipeline.__call__()" in (body or ""):
similarity_misroute = True
last_err = he
_append_log(job_id, f"HF failed: {he}.")
LOG.error(f"HF failed: {he}")
elif b == "deepinfra":
try:
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
except Exception as e:
last_err = e
_append_log(job_id, f"DeepInfra failed: {e}.")
LOG.error(f"DeepInfra failed: {e}")
else:
_append_log(job_id, f"Backend inconnu ignoré: {b}")
if ALLOW_DI_AUTOFALLBACK and similarity_misroute and DI_TOKEN:
LOG.warning("HF a routé sur SentenceSimilarity => auto-fallback DeepInfra (override ordre).")
_append_log(job_id, "Auto-fallback DeepInfra (HF => SentenceSimilarity).")
return _call_with_retries(_di_post_embeddings_once, batch, "DeepInfra", job_id)
raise RuntimeError(f"Tous les backends ont échoué: {last_err}")
# ---------- Chunking ----------
def _chunk_with_spans(text: str, size: int, overlap: int):
n = len(text or "")
if size <= 0:
yield (0, n, text); return
i = 0
while i < n:
j = min(n, i + size)
yield (i, j, text[i:j])
i = max(0, j - overlap)
if i >= n: break
# ---------- Background task ----------
def run_index_job(job_id: str, req: IndexRequest):
try:
_set_status(job_id, "running")
total_chunks = 0
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backends={EMB_BACKEND_ORDER} | store={VECTOR_STORE}")
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
# Warmup -> dimension
warm = "warmup"
if req.files:
for _, _, chunk_txt in _chunk_with_spans(req.files[0].text or "", req.chunk_size, req.overlap):
if (chunk_txt or "").strip():
warm = chunk_txt; break
embs, _ = _post_embeddings([warm], job_id=job_id)
dim = embs.shape[1]
col = f"proj_{req.project_id}"
STORE.ensure_collection(col, dim)
_append_log(job_id, f"Collection ready: {col} (dim={dim})")
# loop fichiers
for fi, f in enumerate(req.files, 1):
if not (f.text or "").strip():
_append_log(job_id, f"file {fi}: vide — ignoré")
continue
batch_txts, metas = [], []
def _flush():
nonlocal batch_txts, metas, total_chunks
if not batch_txts: return
vecs, sz = _post_embeddings(batch_txts, job_id=job_id)
added = STORE.upsert(col, vecs, metas)
total_chunks += added
_append_log(job_id, f"file {fi}/{len(req.files)}: +{added} chunks (total={total_chunks})")
batch_txts, metas = [], []
for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(f.text, req.chunk_size, req.overlap)):
if not (chunk_txt or "").strip():
continue
batch_txts.append(chunk_txt)
meta = {"path": f.path, "chunk": ci, "start": start, "end": end}
if req.store_text:
meta["text"] = chunk_txt
metas.append(meta)
if len(batch_txts) >= req.batch_size:
_flush()
_flush()
_append_log(job_id, f"Done. chunks={total_chunks}")
_set_status(job_id, "done")
LOG.info(f"[{job_id}] Index finished. chunks={total_chunks}")
except Exception as e:
LOG.exception("Index job failed")
_append_log(job_id, f"ERROR: {e}")
_set_status(job_id, "error")
# ---------- API ----------
app = FastAPI()
@app.get("/")
def root():
return {
"ok": True,
"service": "remote-indexer",
"backends": EMB_BACKEND_ORDER,
"hf_url_pipeline": HF_URL_PIPELINE if "hf" in EMB_BACKEND_ORDER else None,
"hf_url_models": HF_URL_MODELS if "hf" in EMB_BACKEND_ORDER else None,
"di_url": DI_URL if "deepinfra" in EMB_BACKEND_ORDER else None,
"di_model": DI_MODEL if "deepinfra" in EMB_BACKEND_ORDER else None,
"vector_store": VECTOR_STORE,
"vector_store_active": type(STORE).__name__,
"docs": "/health, /index, /status/{job_id}, /query, /wipe"
}
@app.get("/health")
def health():
return {"ok": True}
def _check_backend_ready():
if "hf" in EMB_BACKEND_ORDER and not HF_TOKEN:
raise HTTPException(400, "HF_API_TOKEN manquant côté serveur (backend=hf).")
if "deepinfra" in EMB_BACKEND_ORDER and not DI_TOKEN and EMB_BACKEND_ORDER == ["deepinfra"]:
raise HTTPException(400, "DEEPINFRA_API_KEY manquant côté serveur (backend=deepinfra).")
@app.post("/index")
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
_check_backend_ready()
non_empty = [f for f in req.files if (f.text or "").strip()]
if not non_empty:
raise HTTPException(422, "Aucun fichier non vide à indexer.")
req.files = non_empty
job_id = uuid.uuid4().hex[:12]
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
background_tasks.add_task(run_index_job, job_id, req)
return {"job_id": job_id}
@app.get("/status/{job_id}")
def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
j = JOBS.get(job_id)
if not j:
raise HTTPException(404, "job inconnu")
return {"status": j["status"], "logs": j["logs"][-800:]}
# Legacy compat
@app.get("/status")
def status_qp(job_id: str = Query(None), x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
if not job_id:
raise HTTPException(404, "job inconnu")
j = JOBS.get(job_id)
if not j:
raise HTTPException(404, "job inconnu")
return {"status": j["status"], "logs": j["logs"][-800:]}
class _StatusBody(BaseModel):
job_id: str
@app.post("/status")
def status_post(body: _StatusBody, x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
j = JOBS.get(body.job_id)
if not j:
raise HTTPException(404, "job inconnu")
return {"status": j["status"], "logs": j["logs"][-800:]}
@app.post("/query")
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
_check_backend_ready()
k = int(max(1, min(50, req.top_k or 6)))
vecs, _ = _post_embeddings([req.query])
col = f"proj_{req.project_id}"
# Recherche selon le store actif
try:
hits = STORE.search(col, vecs[0], k)
except Exception as e:
raise HTTPException(400, f"Search failed: {e}")
out = []
# Qdrant renvoie des objets avec .score, .payload
for p in hits:
pl = getattr(p, "payload", None) or {}
score = float(getattr(p, "score", 0.0))
txt = pl.get("text")
if txt and len(txt) > 800:
txt = txt[:800] + "..."
out.append({
"path": pl.get("path"),
"chunk": pl.get("chunk"),
"start": pl.get("start"),
"end": pl.get("end"),
"text": txt,
"score": score,
})
return {"results": out}
@app.post("/wipe")
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
col = f"proj_{project_id}"
try:
STORE.wipe(col); return {"ok": True}
except Exception as e:
raise HTTPException(400, f"wipe failed: {e}")
# ---------- Entrypoint ----------
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", "7860"))
LOG.info(f"===== Application Startup on PORT {port} =====")
uvicorn.run(app, host="0.0.0.0", port=port)
|