Spaces:
Running
Running
File size: 11,246 Bytes
55d13a0 7709c11 55d13a0 7709c11 aa271fe 5819ee4 55d13a0 5819ee4 ac07878 7709c11 77c7489 7709c11 aa271fe 7709c11 ac07878 7709c11 ac07878 5819ee4 ac07878 5819ee4 ac07878 5819ee4 ac07878 5819ee4 ac07878 5819ee4 ac07878 7709c11 ac07878 5819ee4 ac07878 7709c11 4bdb54f 5819ee4 7709c11 aa271fe 7709c11 5819ee4 aa271fe 7709c11 173fd35 7709c11 c50ee85 5819ee4 7709c11 5819ee4 7709c11 ac07878 7709c11 5819ee4 7709c11 ac07878 7709c11 c50ee85 55d13a0 173fd35 7709c11 5819ee4 7709c11 55d13a0 ac07878 7709c11 ac07878 7709c11 55d13a0 5819ee4 55d13a0 7709c11 55d13a0 7709c11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import os
# Try to load the Haar Cascade classifier for face detection
face_cascade = None
cascade_paths = [
"haarcascade_frontalface_default.xml",
"./haarcascade_frontalface_default.xml",
os.path.join(os.path.dirname(__file__), "haarcascade_frontalface_default.xml"),
cv2.data.haarcascades + "haarcascade_frontalface_default.xml"
]
for path in cascade_paths:
if os.path.exists(path):
face_cascade = cv2.CascadeClassifier(path)
if not face_cascade.empty():
print(f"Successfully loaded Haar Cascade from: {path}")
break
else:
print(f"Failed to load Haar Cascade from: {path}")
else:
print(f"File not found: {path}")
if face_cascade is None or face_cascade.empty():
print("Warning: Could not load Haar Cascade classifier. Face detection will be disabled.")
face_cascade = None
def process_image(image, click_x, click_y, effect_type):
if image is None:
return None, "Please upload an image first."
img_np = np.array(image)
img_np_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
processed_img_np_bgr = img_np_bgr.copy()
status_message = ""
applied_to_region = False
# Prioritize clicked region if available
if click_x is not None and click_y is not None:
# Try to find a face near the click
faces = []
if face_cascade is not None:
gray = cv2.cvtColor(img_np_bgr, cv2.COLOR_BGR2GRAY)
try:
all_faces = face_cascade.detectMultiScale(gray, 1.1, 4)
min_distance = float("inf")
target_face = None
for (fx, fy, fw, fh) in all_faces:
face_center_x = fx + fw // 2
face_center_y = fy + fh // 2
distance = np.sqrt((face_center_x - click_x)**2 + (face_center_y - click_y)**2)
if distance < min_distance and distance < 100: # Within 100 pixels of click
min_distance = distance
target_face = (fx, fy, fw, fh)
if target_face:
faces.append(target_face)
except Exception as e:
print(f"Face detection error during click processing: {e}")
if len(faces) > 0:
# Apply effect to the detected face near click
x, y, w, h = faces[0]
roi = processed_img_np_bgr[y:y+h, x:x+w]
status_message = f"Applied {effect_type} effect to detected face near click."
applied_to_region = True
else:
# Apply effect to a general region around the click
region_size = 100
x1 = max(0, int(click_x - region_size // 2))
y1 = max(0, int(click_y - region_size // 2))
x2 = min(image.width, int(click_x + region_size // 2))
y2 = min(image.height, int(click_y + region_size // 2))
roi = processed_img_np_bgr[y1:y2, x1:x2]
status_message = f"Applied {effect_type} effect to clicked region."
applied_to_region = True
if applied_to_region:
if effect_type == "blur":
processed_roi = cv2.GaussianBlur(roi, (15, 15), 0)
elif effect_type == "sharpen":
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
processed_roi = cv2.filter2D(roi, -1, kernel)
elif effect_type == "grayscale":
processed_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
processed_roi = cv2.cvtColor(processed_roi, cv2.COLOR_GRAY2BGR)
elif effect_type == "pixelate":
h_roi, w_roi = roi.shape[:2]
temp = cv2.resize(roi, (w_roi//10, h_roi//10), interpolation=cv2.INTER_LINEAR)
processed_roi = cv2.resize(temp, (w_roi, h_roi), interpolation=cv2.INTER_NEAREST)
else:
processed_roi = roi
if len(faces) > 0:
processed_img_np_bgr[y:y+h, x:x+w] = processed_roi
else:
processed_img_np_bgr[y1:y2, x1:x2] = processed_roi
if not applied_to_region: # Fallback if no click or no specific region applied
# Apply effect to all detected faces if no click or no face near click
faces = []
if face_cascade is not None:
gray = cv2.cvtColor(img_np_bgr, cv2.COLOR_BGR2GRAY)
try:
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
except Exception as e:
print(f"Face detection error: {e}")
faces = []
if len(faces) > 0:
for (x, y, w, h) in faces:
roi = processed_img_np_bgr[y:y+h, x:x+w]
if effect_type == "blur":
processed_roi = cv2.GaussianBlur(roi, (35, 35), 0)
elif effect_type == "sharpen":
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
processed_roi = cv2.filter2D(roi, -1, kernel)
elif effect_type == "grayscale":
processed_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
processed_roi = cv2.cvtColor(processed_roi, cv2.COLOR_GRAY2BGR)
elif effect_type == "pixelate":
h_roi, w_roi = roi.shape[:2]
temp = cv2.resize(roi, (w_roi//10, h_roi//10), interpolation=cv2.INTER_LINEAR)
processed_roi = cv2.resize(temp, (w_roi, h_roi), interpolation=cv2.INTER_NEAREST)
else:
processed_roi = roi
processed_img_np_bgr[y:y+h, x:x+w] = processed_roi
status_message = f"Applied {effect_type} effect to {len(faces)} detected face(s)."
else:
# Apply effect to center region if no faces detected and no click
h, w = img_np_bgr.shape[:2]
center_x, center_y = w // 2, h // 2
region_size = min(200, w//3, h//3)
x1 = max(0, center_x - region_size // 2)
y1 = max(0, center_y - region_size // 2)
x2 = min(w, center_x + region_size // 2)
y2 = min(h, center_y + region_size // 2)
roi = processed_img_np_bgr[y1:y2, x1:x1+roi.shape[1]] = processed_roi
if face_cascade is None:
status_message = f"Applied {effect_type} effect to center region (face detection unavailable)."
else:
status_message = f"No faces detected. Applied {effect_type} effect to center region."
img_pil = Image.fromarray(cv2.cvtColor(processed_img_np_bgr, cv2.COLOR_BGR2RGB))
return img_pil, status_message
def detect_faces_only(image):
if image is None:
return None, "Please upload an image first."
if face_cascade is None:
return image, "Face detection is not available (Haar Cascade not loaded)."
img_np = np.array(image)
img_np_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(img_np_bgr, cv2.COLOR_BGR2GRAY)
try:
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
except Exception as e:
return image, f"Face detection error: {str(e)}"
# Draw rectangles around detected faces
for (x, y, w, h) in faces:
cv2.rectangle(img_np_bgr, (x, y), (x+w, y+h), (255, 0, 0), 2)
img_pil = Image.fromarray(cv2.cvtColor(img_np_bgr, cv2.COLOR_BGR2RGB))
return img_pil, f"Detected {len(faces)} face(s)."
# Custom CSS for better styling
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.main-header {
text-align: center;
color: #2c3e50;
margin-bottom: 20px;
}
.instruction-text {
background-color: #f8f9fa;
padding: 15px;
border-radius: 8px;
border-left: 4px solid #007bff;
margin-bottom: 20px;
}
"""
# Gradio interface
with gr.Blocks(css=css, title="AI Image Editor") as demo:
gr.HTML("<h1 class='main-header'>π¨ AI Image Editor (CPU-friendly)</h1>")
face_detection_status = "β
Face detection enabled" if face_cascade is not None else "β οΈ Face detection disabled (Haar Cascade not found)"
gr.HTML(f"""
<div class='instruction-text'>
<strong>Status:</strong> {face_detection_status}<br><br>
<strong>Instructions:</strong>
<ol>
<li>Upload an image using the file uploader</li>
<li>Click on the image to select a region (optional)</li>
<li>Choose an effect from the dropdown menu</li>
<li>Click "Apply Effect" to process the image</li>
<li>If face detection is available, use "Detect Faces" to see detected faces</li>
</ol>
<em>Note: If you click on the image, the effect will be applied to the clicked region (prioritizing faces near the click). Otherwise, if face detection is available, effects will be applied to all detected faces. As a last resort, effects will be applied to the center region.</em>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="π Upload Image",
interactive=True,
height=400
)
with gr.Row():
effect_dropdown = gr.Dropdown(
["None", "blur", "sharpen", "grayscale", "pixelate"],
label="π Select Effect",
value="blur"
)
with gr.Row():
process_button = gr.Button("β¨ Apply Effect", variant="primary", size="lg")
if face_cascade is not None:
detect_button = gr.Button("π€ Detect Faces", variant="secondary", size="lg")
status_text = gr.Textbox(
label="π Status",
interactive=False,
placeholder="Ready to process..."
)
with gr.Column(scale=1):
output_image = gr.Image(
type="pil",
label="πΌοΈ Processed Image",
height=400
)
# Store click coordinates
clicked_x = gr.State(None)
clicked_y = gr.State(None)
def get_coords(evt: gr.SelectData):
if evt.index is not None and len(evt.index) == 2:
return evt.index[0], evt.index[1]
return None, None
input_image.select(get_coords, None, [clicked_x, clicked_y])
process_button.click(
fn=process_image,
inputs=[input_image, clicked_x, clicked_y, effect_dropdown],
outputs=[output_image, status_text]
)
if face_cascade is not None:
detect_button.click(
fn=detect_faces_only,
inputs=[input_image],
outputs=[output_image, status_text]
)
gr.HTML("""
<div style='text-align: center; margin-top: 20px; color: #6c757d;'>
<p>Built with β€οΈ for CPU-friendly image processing | Powered by OpenCV & Gradio</p>
</div>
""")
if __name__ == "__main__":
demo.launch()
|