Spaces:
Running
Running
| import os | |
| import re | |
| import tempfile | |
| import requests | |
| import gradio as gr | |
| from PyPDF2 import PdfReader | |
| import openai | |
| import logging | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| # Initialize Hugging Face models | |
| HUGGINGFACE_MODELS = { | |
| "Phi-3 Mini 128k Instruct by EswardiVI": "eswardivi/Phi-3-mini-128k-instruct", | |
| "Phi-3 Mini 128k Instruct by TaufiqDP": "taufiqdp/phi-3-mini-128k-instruct" | |
| } | |
| # Utility Functions | |
| def extract_text_from_pdf(pdf_path): | |
| """Extract text content from PDF file.""" | |
| try: | |
| reader = PdfReader(pdf_path) | |
| text = "" | |
| for page_num, page in enumerate(reader.pages, start=1): | |
| page_text = page.extract_text() | |
| if page_text: | |
| text += page_text + "\n" | |
| else: | |
| logging.warning(f"No text found on page {page_num}.") | |
| if not text.strip(): | |
| return "Error: No extractable text found in the PDF." | |
| return text | |
| except Exception as e: | |
| logging.error(f"Error reading PDF file: {e}") | |
| return f"Error reading PDF file: {e}" | |
| def format_content(text, format_type): | |
| """Format extracted text according to specified format.""" | |
| if format_type == 'txt': | |
| return text | |
| elif format_type == 'md': | |
| paragraphs = text.split('\n\n') | |
| return '\n\n'.join(paragraphs) | |
| elif format_type == 'html': | |
| paragraphs = text.split('\n\n') | |
| return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()]) | |
| else: | |
| logging.error(f"Unsupported format: {format_type}") | |
| return f"Unsupported format: {format_type}" | |
| def split_into_snippets(text, context_size): | |
| """Split text into manageable snippets based on context size.""" | |
| sentences = re.split(r'(?<=[.!?]) +', text) | |
| snippets = [] | |
| current_snippet = "" | |
| for sentence in sentences: | |
| if len(current_snippet) + len(sentence) + 1 > context_size: | |
| if current_snippet: | |
| snippets.append(current_snippet.strip()) | |
| current_snippet = sentence + " " | |
| else: | |
| snippets.append(sentence.strip()) | |
| current_snippet = "" | |
| else: | |
| current_snippet += sentence + " " | |
| if current_snippet.strip(): | |
| snippets.append(current_snippet.strip()) | |
| return snippets | |
| def build_prompts(snippets, prompt_instruction, custom_prompt): | |
| """Build formatted prompts from text snippets.""" | |
| prompts = [] | |
| for idx, snippet in enumerate(snippets, start=1): | |
| current_prompt = custom_prompt if custom_prompt else prompt_instruction | |
| framed_prompt = f"---\nPart {idx} of {len(snippets)}:\n{current_prompt}\n\n{snippet}\n\nEnd of Part {idx}.\n---" | |
| prompts.append(framed_prompt) | |
| return prompts | |
| def send_to_huggingface(prompt, model_name): | |
| """Send prompt to Hugging Face model.""" | |
| try: | |
| payload = {"inputs": prompt} | |
| response = requests.post( | |
| f"https://api-inference.huggingface.co/models/{model_name}", | |
| json=payload | |
| ) | |
| if response.status_code == 200: | |
| return response.json()[0].get('generated_text', 'No generated text found.') | |
| else: | |
| error_info = response.json() | |
| error_message = error_info.get('error', 'Unknown error occurred.') | |
| logging.error(f"Error from Hugging Face model: {error_message}") | |
| return f"Error from Hugging Face model: {error_message}" | |
| except Exception as e: | |
| logging.error(f"Error interacting with Hugging Face model: {e}") | |
| return f"Error interacting with Hugging Face model: {e}" | |
| def authenticate_openai(api_key): | |
| """Authenticate with OpenAI API.""" | |
| if api_key: | |
| try: | |
| openai.api_key = api_key | |
| openai.Model.list() | |
| return "OpenAI Authentication Successful!" | |
| except Exception as e: | |
| logging.error(f"OpenAI API Key Error: {e}") | |
| return f"OpenAI API Key Error: {e}" | |
| return "No OpenAI API key provided." | |
| # Main Interface | |
| with gr.Blocks(theme=gr.themes.Default()) as demo: | |
| # Header | |
| gr.Markdown("# π Smart PDF Summarizer") | |
| gr.Markdown("Upload a PDF document and get AI-powered summaries using OpenAI or Hugging Face models.") | |
| # Authentication Section | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| openai_api_key = gr.Textbox( | |
| label="π OpenAI API Key", | |
| type="password", | |
| placeholder="Enter your OpenAI API key (optional)" | |
| ) | |
| auth_status = gr.Textbox( | |
| label="Authentication Status", | |
| interactive=False | |
| ) | |
| auth_button = gr.Button("π Authenticate", variant="primary") | |
| # Main Content | |
| with gr.Row(): | |
| # Left Column - Input Options | |
| with gr.Column(scale=1): | |
| pdf_input = gr.File( | |
| label="π Upload PDF", | |
| file_types=[".pdf"] | |
| ) | |
| with gr.Row(): | |
| format_type = gr.Radio( | |
| choices=["txt", "md", "html"], | |
| value="txt", | |
| label="π Output Format" | |
| ) | |
| context_size = gr.Slider( | |
| minimum=4000, | |
| maximum=128000, | |
| step=4000, | |
| value=32000, | |
| label="π Context Window Size" | |
| ) | |
| snippet_number = gr.Number( | |
| label="π’ Snippet Number (Optional)", | |
| value=None, | |
| precision=0 | |
| ) | |
| custom_prompt = gr.Textbox( | |
| label="βοΈ Custom Prompt", | |
| placeholder="Enter your custom prompt here...", | |
| lines=2 | |
| ) | |
| model_choice = gr.Radio( | |
| choices=["OpenAI ChatGPT", "Hugging Face Model"], | |
| value="OpenAI ChatGPT", | |
| label="π€ Model Selection" | |
| ) | |
| hf_model = gr.Dropdown( | |
| choices=list(HUGGINGFACE_MODELS.keys()), | |
| label="π§ Hugging Face Model", | |
| visible=False | |
| ) | |
| # Right Column - Output | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| process_button = gr.Button("π Process PDF", variant="primary") | |
| progress_status = gr.Textbox( | |
| label="π Progress", | |
| interactive=False | |
| ) | |
| generated_prompt = gr.Textbox( | |
| label="π Generated Prompt", | |
| lines=10 | |
| ) | |
| summary_output = gr.Textbox( | |
| label="π Summary", | |
| lines=15 | |
| ) | |
| with gr.Row(): | |
| download_prompt = gr.File( | |
| label="π₯ Download Prompt" | |
| ) | |
| download_summary = gr.File( | |
| label="π₯ Download Summary" | |
| ) | |
| # Event Handlers | |
| def toggle_hf_model(choice): | |
| return gr.update(visible=choice == "Hugging Face Model") | |
| def handle_authentication(api_key): | |
| return authenticate_openai(api_key) | |
| def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, hf_model_choice, api_key): | |
| try: | |
| if not pdf: | |
| return "Please upload a PDF file.", "", "", None, None | |
| # Extract text | |
| text = extract_text_from_pdf(pdf.name) | |
| if text.startswith("Error"): | |
| return text, "", "", None, None | |
| # Format content | |
| formatted_text = format_content(text, fmt) | |
| # Split into snippets | |
| snippets = split_into_snippets(formatted_text, ctx_size) | |
| # Process specific snippet or all | |
| if snippet_num is not None: | |
| if 1 <= snippet_num <= len(snippets): | |
| selected_snippets = [snippets[snippet_num - 1]] | |
| else: | |
| return f"Invalid snippet number. Please choose between 1 and {len(snippets)}.", "", "", None, None | |
| else: | |
| selected_snippets = snippets | |
| # Build prompts | |
| default_prompt = "Summarize the following text:" | |
| prompts = build_prompts(selected_snippets, default_prompt, prompt) | |
| full_prompt = "\n".join(prompts) | |
| # Generate summary | |
| if model_selection == "OpenAI ChatGPT": | |
| if not api_key: | |
| return "OpenAI API key required.", full_prompt, "", None, None | |
| try: | |
| openai.api_key = api_key | |
| response = openai.ChatCompletion.create( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": full_prompt}] | |
| ) | |
| summary = response.choices[0].message.content | |
| except Exception as e: | |
| return f"OpenAI API error: {str(e)}", full_prompt, "", None, None | |
| else: | |
| summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice]) | |
| # Save files for download | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file: | |
| prompt_file.write(full_prompt) | |
| prompt_path = prompt_file.name | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file: | |
| summary_file.write(summary) | |
| summary_path = summary_file.name | |
| return "Processing complete!", full_prompt, summary, prompt_path, summary_path | |
| except Exception as e: | |
| logging.error(f"Error processing PDF: {e}") | |
| return f"Error processing PDF: {str(e)}", "", "", None, None | |
| # Connect event handlers | |
| model_choice.change( | |
| toggle_hf_model, | |
| inputs=[model_choice], | |
| outputs=[hf_model] | |
| ) | |
| auth_button.click( | |
| handle_authentication, | |
| inputs=[openai_api_key], | |
| outputs=[auth_status] | |
| ) | |
| process_button.click( | |
| process_pdf, | |
| inputs=[ | |
| pdf_input, | |
| format_type, | |
| context_size, | |
| snippet_number, | |
| custom_prompt, | |
| model_choice, | |
| hf_model, | |
| openai_api_key | |
| ], | |
| outputs=[ | |
| progress_status, | |
| generated_prompt, | |
| summary_output, | |
| download_prompt, | |
| download_summary | |
| ] | |
| ) | |
| # Instructions | |
| gr.Markdown(""" | |
| ### π Instructions: | |
| 1. (Optional) Enter your OpenAI API key and authenticate | |
| 2. Upload a PDF document | |
| 3. Choose output format and context window size | |
| 4. Optionally specify a snippet number or custom prompt | |
| 5. Select between OpenAI ChatGPT or Hugging Face model | |
| 6. Click 'Process PDF' to generate summary | |
| 7. Download the generated prompt and summary as needed | |
| ### βοΈ Features: | |
| - Support for multiple PDF formats | |
| - Flexible text formatting options | |
| - Custom prompt creation | |
| - Multiple AI model options | |
| - Snippet-based processing | |
| - Downloadable outputs | |
| """) | |
| # Launch the interface | |
| if __name__ == "__main__": | |
| demo.launch(share=False, debug=True) |