Spaces:
Paused
Paused
| import os | |
| import re | |
| import tempfile | |
| import requests | |
| import gradio as gr | |
| from PyPDF2 import PdfReader | |
| import logging | |
| import webbrowser | |
| from gradio_client import Client | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| # Initialize Hugging Face models | |
| HUGGINGFACE_MODELS = { | |
| "Phi-3 Mini 128k": "eswardivi/Phi-3-mini-128k-instruct", | |
| } | |
| # Common context window sizes | |
| CONTEXT_SIZES = { | |
| "4K": 4000, | |
| "8K": 8000, | |
| "32K": 32000, | |
| "128K": 128000, | |
| "200K": 200000 | |
| } | |
| def copy_to_clipboard(text): | |
| return text | |
| def open_chatgpt(): | |
| webbrowser.open('https://chat.openai.com/') | |
| return "Opening ChatGPT in browser..." | |
| # Utility Functions | |
| def extract_text_from_pdf(pdf_path): | |
| """Extract text content from PDF file.""" | |
| try: | |
| reader = PdfReader(pdf_path) | |
| text = "" | |
| for page_num, page in enumerate(reader.pages, start=1): | |
| page_text = page.extract_text() | |
| if page_text: | |
| text += page_text + "\n" | |
| else: | |
| logging.warning(f"No text found on page {page_num}.") | |
| if not text.strip(): | |
| return "Error: No extractable text found in the PDF." | |
| return text | |
| except Exception as e: | |
| logging.error(f"Error reading PDF file: {e}") | |
| return f"Error reading PDF file: {e}" | |
| def format_content(text, format_type): | |
| """Format extracted text according to specified format.""" | |
| if format_type == 'txt': | |
| return text | |
| elif format_type == 'md': | |
| paragraphs = text.split('\n\n') | |
| return '\n\n'.join(paragraphs) | |
| elif format_type == 'html': | |
| paragraphs = text.split('\n\n') | |
| return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()]) | |
| else: | |
| logging.error(f"Unsupported format: {format_type}") | |
| return f"Unsupported format: {format_type}" | |
| def split_into_snippets(text, context_size): | |
| """Split text into manageable snippets based on context size.""" | |
| sentences = re.split(r'(?<=[.!?]) +', text) | |
| snippets = [] | |
| current_snippet = "" | |
| for sentence in sentences: | |
| if len(current_snippet) + len(sentence) + 1 > context_size: | |
| if current_snippet: | |
| snippets.append(current_snippet.strip()) | |
| current_snippet = sentence + " " | |
| else: | |
| snippets.append(sentence.strip()) | |
| current_snippet = "" | |
| else: | |
| current_snippet += sentence + " " | |
| if current_snippet.strip(): | |
| snippets.append(current_snippet.strip()) | |
| return snippets | |
| def build_prompts(snippets, prompt_instruction, custom_prompt, snippet_num=None): | |
| """Build formatted prompts from text snippets.""" | |
| if snippet_num is not None: | |
| if 1 <= snippet_num <= len(snippets): | |
| selected_snippets = [snippets[snippet_num - 1]] | |
| else: | |
| return f"Error: Invalid snippet number. Please choose between 1 and {len(snippets)}." | |
| else: | |
| selected_snippets = snippets | |
| prompts = [] | |
| base_prompt = custom_prompt if custom_prompt else prompt_instruction | |
| for idx, snippet in enumerate(selected_snippets, start=1): | |
| if len(selected_snippets) > 1: | |
| prompt_header = f"{base_prompt} Part {idx} of {len(selected_snippets)}: ---\n" | |
| else: | |
| prompt_header = f"{base_prompt} ---\n" | |
| framed_prompt = f"{prompt_header}{snippet}\n---" | |
| prompts.append(framed_prompt) | |
| return "\n\n".join(prompts) | |
| def send_to_huggingface(prompt, model_name): | |
| """Send prompt to Hugging Face model using gradio_client.""" | |
| try: | |
| client = Client(model_name) | |
| response = client.predict( | |
| prompt, # message | |
| 0.9, # temperature | |
| True, # sampling | |
| 512, # max_new_tokens | |
| api_name="/chat" | |
| ) | |
| return response | |
| except Exception as e: | |
| logging.error(f"Error interacting with Hugging Face model: {e}") | |
| return f"Error interacting with Hugging Face model: {e}" | |
| # Main Interface | |
| with gr.Blocks(theme=gr.themes.Default()) as demo: | |
| # Header | |
| gr.Markdown("# π Smart PDF Summarizer") | |
| gr.Markdown("Upload a PDF document and get AI-powered summaries using OpenAI or Hugging Face models.") | |
| # Main Content | |
| with gr.Row(): | |
| # Left Column - Input Options | |
| with gr.Column(scale=1): | |
| pdf_input = gr.File( | |
| label="π Upload PDF", | |
| file_types=[".pdf"] | |
| ) | |
| with gr.Row(): | |
| format_type = gr.Radio( | |
| choices=["txt", "md", "html"], | |
| value="txt", | |
| label="π Output Format" | |
| ) | |
| gr.Markdown("### Context Window Size") | |
| with gr.Row(): | |
| for size_name, size_value in CONTEXT_SIZES.items(): | |
| if gr.Button(size_name).click: | |
| context_size.value = size_value | |
| context_size = gr.Slider( | |
| minimum=1000, | |
| maximum=200000, | |
| step=1000, | |
| value=32000, | |
| label="π Custom Context Size" | |
| ) | |
| snippet_number = gr.Number( | |
| label="π’ Snippet Number", | |
| value=1, | |
| precision=0 | |
| ) | |
| custom_prompt = gr.Textbox( | |
| label="βοΈ Custom Prompt", | |
| placeholder="Enter your custom prompt here...", | |
| lines=2 | |
| ) | |
| model_choice = gr.Radio( | |
| choices=["OpenAI ChatGPT", "Hugging Face Model"], | |
| value="OpenAI ChatGPT", | |
| label="π€ Model Selection" | |
| ) | |
| hf_model = gr.Dropdown( | |
| choices=list(HUGGINGFACE_MODELS.keys()), | |
| label="π§ Hugging Face Model", | |
| visible=False | |
| ) | |
| # Authentication moved down | |
| with gr.Row(visible=False) as auth_row: | |
| openai_api_key = gr.Textbox( | |
| label="π OpenAI API Key", | |
| type="password", | |
| placeholder="Enter your OpenAI API key (optional)" | |
| ) | |
| # Right Column - Output | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| process_button = gr.Button("π Process PDF", variant="primary") | |
| progress_status = gr.Textbox( | |
| label="π Progress", | |
| interactive=False | |
| ) | |
| generated_prompt = gr.Textbox( | |
| label="π Generated Prompt", | |
| lines=10 | |
| ) | |
| with gr.Row(): | |
| copy_prompt_button = gr.Button("π Copy Prompt") | |
| open_chatgpt_button = gr.Button("π Open ChatGPT") | |
| summary_output = gr.Textbox( | |
| label="π Summary", | |
| lines=15 | |
| ) | |
| with gr.Row(): | |
| copy_summary_button = gr.Button("π Copy Summary") | |
| download_files = gr.Files( | |
| label="π₯ Download Files" | |
| ) | |
| # Event Handlers | |
| def toggle_hf_model(choice): | |
| return gr.update(visible=choice == "Hugging Face Model"), gr.update(visible=choice == "OpenAI ChatGPT") | |
| def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, hf_model_choice): | |
| try: | |
| if not pdf: | |
| return "Please upload a PDF file.", "", "", None | |
| # Extract text | |
| text = extract_text_from_pdf(pdf.name) | |
| if text.startswith("Error"): | |
| return text, "", "", None | |
| # Format content | |
| formatted_text = format_content(text, fmt) | |
| # Split into snippets | |
| snippets = split_into_snippets(formatted_text, ctx_size) | |
| # Build prompts | |
| default_prompt = "Summarize the following text:" | |
| full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num) | |
| if isinstance(full_prompt, str) and full_prompt.startswith("Error"): | |
| return full_prompt, "", "", None | |
| # Generate summary based on model choice | |
| if model_selection == "Hugging Face Model": | |
| summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice]) | |
| else: | |
| summary = "Please use the Copy Prompt button and paste into ChatGPT." | |
| # Save files for download | |
| files_to_download = [] | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file: | |
| prompt_file.write(full_prompt) | |
| files_to_download.append(prompt_file.name) | |
| if summary != "Please use the Copy Prompt button and paste into ChatGPT.": | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file: | |
| summary_file.write(summary) | |
| files_to_download.append(summary_file.name) | |
| return "Processing complete!", full_prompt, summary, files_to_download | |
| except Exception as e: | |
| logging.error(f"Error processing PDF: {e}") | |
| return f"Error processing PDF: {str(e)}", "", "", None | |
| # Connect event handlers | |
| model_choice.change( | |
| toggle_hf_model, | |
| inputs=[model_choice], | |
| outputs=[hf_model, auth_row] | |
| ) | |
| process_button.click( | |
| process_pdf, | |
| inputs=[ | |
| pdf_input, | |
| format_type, | |
| context_size, | |
| snippet_number, | |
| custom_prompt, | |
| model_choice, | |
| hf_model | |
| ], | |
| outputs=[ | |
| progress_status, | |
| generated_prompt, | |
| summary_output, | |
| download_files | |
| ] | |
| ) | |
| copy_prompt_button.click( | |
| copy_to_clipboard, | |
| inputs=[generated_prompt], | |
| outputs=[progress_status] | |
| ) | |
| copy_summary_button.click( | |
| copy_to_clipboard, | |
| inputs=[summary_output], | |
| outputs=[progress_status] | |
| ) | |
| open_chatgpt_button.click( | |
| open_chatgpt, | |
| outputs=[progress_status] | |
| ) | |
| # Instructions | |
| gr.Markdown(""" | |
| ### π Instructions: | |
| 1. Upload a PDF document | |
| 2. Choose output format and context window size | |
| 3. Select snippet number (default: 1) or enter custom prompt | |
| 4. Select between OpenAI ChatGPT or Hugging Face model | |
| 5. Click 'Process PDF' to generate summary | |
| 6. Use 'Copy Prompt' and 'Open ChatGPT' for manual processing | |
| 7. Download generated files as needed | |
| ### βοΈ Features: | |
| - Support for multiple PDF formats | |
| - Flexible text formatting options | |
| - Predefined context window sizes (4K to 200K) | |
| - Copy to clipboard functionality | |
| - Direct ChatGPT integration | |
| - Downloadable outputs | |
| """) | |
| # Launch the interface | |
| if __name__ == "__main__": | |
| demo.launch(share=False, debug=True) |