File size: 16,503 Bytes
dd6720a 2de35e1 617928b dd6720a 617928b 2de35e1 617928b dd6720a 617928b 2de35e1 dd6720a 617928b dd6720a 617928b dd6720a 2de35e1 dd6720a 617928b dd6720a 617928b dd6720a 617928b 2de35e1 617928b 2de35e1 617928b ca33b05 617928b ca33b05 617928b ca33b05 617928b ca33b05 617928b 2de35e1 617928b 2de35e1 617928b 2de35e1 617928b 2de35e1 617928b 2de35e1 617928b 2de35e1 617928b dd6720a 2de35e1 dd6720a 617928b dd6720a 2de35e1 dd6720a 617928b dd6720a 617928b dd6720a 2de35e1 dd6720a 2de35e1 dd6720a 617928b 2de35e1 617928b 2de35e1 617928b 2de35e1 617928b 2de35e1 617928b 2de35e1 617928b dd6720a 2de35e1 dd6720a 617928b 2de35e1 617928b 2de35e1 dd6720a 2de35e1 617928b dd6720a 617928b 2de35e1 617928b 2de35e1 dd6720a 2de35e1 dd6720a 2de35e1 dd6720a 617928b 2de35e1 617928b dd6720a 2de35e1 dd6720a 2de35e1 617928b dd6720a 617928b 2de35e1 617928b dd6720a 617928b 2de35e1 617928b dd6720a 617928b dd6720a 617928b 2de35e1 617928b dd6720a 2de35e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import os
import re
from typing import Dict, Tuple, List
import nltk
import spacy
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import pandas as pd
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer, util
# =========================
# 0) Lightweight setup
# =========================
def ensure_spacy():
try:
return spacy.load("en_core_web_sm")
except Exception:
import spacy.cli
spacy.cli.download("en_core_web_sm")
return spacy.load("en_core_web_sm")
def ensure_nltk():
try:
nltk.data.find("tokenizers/punkt")
except LookupError:
nltk.download("punkt")
ensure_nltk()
nlp = ensure_spacy()
# =========================
# 1) Models (cached)
# =========================
sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
bert_sentiment = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)
# =========================
# 2) GNH definitions
# =========================
GNH_DOMAINS: Dict[str, str] = {
"Mental Wellness": "mental health, emotional clarity, peace of mind",
"Social Wellness": "relationships, community, friendship, social harmony",
"Economic Wellness": "income, savings, financial stability, cost of living",
"Workplace Wellness": "career, work-life balance, promotion, productivity",
"Physical Wellness": "physical health, sleep, fitness, exercise",
"Environmental Wellness": "green space, nature, environmental care",
"Health": "healthcare, medical care, recovery, well-being",
"Education Value": "learning, education, school, knowledge, wisdom",
"Good Governance": "freedom, justice, fairness, democratic participation",
"Living Standards": "housing, wealth, basic needs, affordability",
"Cultural Diversity": "tradition, language, cultural expression, heritage",
"Political Wellness": "rights, law, free speech, civic participation",
"Ecological Diversity": "biodiversity, forest, ecosystem, wildlife",
}
GNH_COLORS: Dict[str, str] = {
"Economic Wellness": "#808080",
"Mental Wellness": "#ffc0cb",
"Workplace Wellness": "#ffd700",
"Physical Wellness": "#f5deb3",
"Social Wellness": "#ffa500",
"Political Wellness": "#ffffff",
"Environmental Wellness": "#87ceeb",
"Ecological Diversity": "#228B22",
"Health": "#ff6347",
"Good Governance": "#000000",
"Education Value": "#8b4513",
"Living Standards": "#ffff00",
"Cultural Diversity": "#9370db",
}
# =========================
# 3) Pathways (CSV + images)
# =========================
CSV_PATH = "la matrice plus.csv"
# UI label → internal key
SEQUENCE_ALIASES = {
"Auto (recommend)": "auto",
"Direct": "direct",
"Fem": "feminine",
"Knot": "knot",
"Masc": "masculine",
"Pain": "pain",
"Prayer": "prayer",
"Precise": "precise",
"Practical": "practical",
"Plot": "plot",
"Spiritual": "spiritual",
"Sad": "sad"
}
SEQUENCE_IMAGE_FILES = {
"direct": "direct pathway.png",
"feminine": "fem pathway.png",
"knot": "knot pathway.png",
"masc": "masc pathway.png",
"pain": "pain pathway.png",
"prayer": "prayer pathway.png",
"precise": "precise pathway.png",
"practical": "practical pathway.png",
"plot": "plot pathway.png",
"spiritual": "spiritual pathway.png",
"sad": "sad pathway.png"
}
# ---- load pathway phrases + colors (many-to-many) ----
def load_pathway_info(csv_path: str):
df = pd.read_csv(csv_path)
keys_we_know = set(SEQUENCE_ALIASES.values()) - {"auto"}
rows = df[df["color"].astype(str).str.lower().isin(keys_we_know)].copy()
phrases: Dict[str, str] = {}
seq_to_colors: Dict[str, List[str]] = {}
color_to_seqs: Dict[str, List[str]] = {}
# columns to stitch into a phrase (all except color/r/g/b)
cols_for_phrase = [c for c in df.columns if c not in ("color", "r", "g", "b")]
for _, row in rows.iterrows():
key = str(row["color"]).strip().lower()
# parse colors list from column 'r' (e.g., "red, orange")
colors_field = str(row.get("r", "") or "")
colors = [c.strip().lower() for c in re.split(r"[,\s]+", colors_field) if c.strip()]
colors = list(dict.fromkeys(colors)) # dedupe, keep order
seq_to_colors[key] = colors
for c in colors:
color_to_seqs.setdefault(c, [])
if key not in color_to_seqs[c]:
color_to_seqs[c].append(key)
# phrase: join all non-null from the other columns (keeps "let's ..." fragments etc.)
vals = []
for c in cols_for_phrase:
v = row.get(c)
if pd.notna(v):
vs = str(v).strip()
if vs and vs.lower() != "nan":
vals.append(vs)
phrase = " ".join(vals)
phrase = " ".join(phrase.split())
phrases[key] = phrase
# color vocab for parsing "red-pathway" in text
color_vocab = sorted(color_to_seqs.keys())
return phrases, seq_to_colors, color_to_seqs, color_vocab
PATHWAY_PHRASES, SEQ_TO_COLORS, COLOR_TO_SEQS, COLOR_VOCAB = load_pathway_info(CSV_PATH)
def sequence_to_image_path(seq_key: str) -> str | None:
fname = SEQUENCE_IMAGE_FILES.get(seq_key)
return fname if (fname and os.path.exists(fname)) else None
# =========================
# 4) Scoring
# =========================
def classify_emotion(text: str) -> Tuple[str, float]:
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
with torch.no_grad():
logits = emotion_model(**inputs).logits
probs = F.softmax(logits, dim=1).squeeze()
labels = emotion_model.config.id2label
idx = int(torch.argmax(probs).item())
return labels[idx], float(probs[idx].item())
def score_sentiment(text: str) -> float:
out = bert_sentiment(text[:512])[0]
label, score = out["label"], out["score"]
scaled = 5 + 5 * score if label == "POSITIVE" else 1 + 4 * (1 - score)
return round(min(10, max(1, scaled)), 2)
def score_accomplishment(text: str) -> float:
doc = nlp(text)
score = 5.0
key_phrases = {"finally", "told", "decided", "quit", "refused", "stood", "walked", "walked away", "returned", "return"}
for token in doc:
if token.text.lower() in key_phrases:
score += 1.5
if token.tag_ in {"VBD", "VBN"}:
score += 0.5
return round(min(10, max(1, score)), 2)
# =========================
# 5) Pathway-aware vector math
# =========================
def encode_text(t: str):
return sbert_model.encode(t, convert_to_tensor=True)
def composite_vector(
base_text: str,
boost_terms: List[str],
boost_seq_keys: List[str],
limit_seq_keys: List[str],
boost_w: float = 0.6,
limit_w: float = 0.6,
):
v = encode_text(base_text)
for term in boost_terms:
t = term.strip()
if t:
v = v + boost_w * encode_text(t)
for key in boost_seq_keys:
phrase = PATHWAY_PHRASES.get(key, "")
if phrase:
v = v + boost_w * encode_text(phrase)
for key in limit_seq_keys:
phrase = PATHWAY_PHRASES.get(key, "")
if phrase:
v = v - limit_w * encode_text(phrase)
return v
def best_sequence_for_vector(vec) -> Tuple[str, float]:
best_key, best_sim = None, -1.0
for key, phrase in PATHWAY_PHRASES.items():
if not phrase:
continue
sim = float(util.cos_sim(vec, encode_text(phrase)).item())
if sim > best_sim:
best_key, best_sim = key, sim
return best_key or "direct", best_sim
def semantic_indicator_mapping_from_vec(vec, sentiment_score: float, sentiment_weight: float = 0.3) -> Dict[str, float]:
out: Dict[str, float] = {}
for label, desc in GNH_DOMAINS.items():
desc_vec = encode_text(desc)
sim = float(util.cos_sim(vec, desc_vec).item())
sim = max(0.0, min(1.0, sim))
blended = (1 - sentiment_weight) * sim + sentiment_weight * (sentiment_score / 10.0)
out[label] = round(blended, 3)
return dict(sorted(out.items(), key=lambda kv: -kv[1]))
# =========================
# 6) Color cues from free text (many-to-many)
# =========================
_COLOR_RE = re.compile(r"\b(" + "|".join(map(re.escape, COLOR_VOCAB)) + r")\s*(?:\-?\s*pathway)?\b", re.I)
_LIMIT_CUES = {"limit", "reduce", "lessen", "avoid", "diminish", "lower", "constrain", "suppress"}
def infer_color_directives(text: str) -> Tuple[List[str], List[str]]:
"""
Parse '... limit ... red-pathway ...' → limit 'red'
otherwise treat mentioned colors as boost.
Returns (boost_colors, limit_colors) as lists of color strings.
"""
tokens = re.findall(r"\w+|\S", text.lower())
idxs = []
for m in _COLOR_RE.finditer(text):
start = m.start()
# find token index closest to this span
char_count = 0
tok_index = 0
for i, tok in enumerate(tokens):
char_count += len(tok) + 1 # crude but ok
if char_count > start:
tok_index = i
break
idxs.append((tok_index, m.group(1).lower()))
boost_colors, limit_colors = [], []
for idx, col in idxs:
# look back a small window for a limit cue
window = tokens[max(0, idx-4):idx]
if any(w in _LIMIT_CUES for w in window):
limit_colors.append(col)
else:
boost_colors.append(col)
# dedupe
boost_colors = list(dict.fromkeys(boost_colors))
limit_colors = list(dict.fromkeys(limit_colors))
return boost_colors, limit_colors
def colors_to_seq_keys(colors: List[str]) -> List[str]:
keys: List[str] = []
for c in colors:
for k in COLOR_TO_SEQS.get(c, []):
if k not in keys:
keys.append(k)
return keys
# =========================
# 7) Plot helper
# =========================
def indicators_plot(indicators: Dict[str, float]):
labels = list(indicators.keys())
values = list(indicators.values())
colors = [GNH_COLORS.get(label, "#cccccc") for label in labels]
fig = plt.figure(figsize=(8, 5))
plt.barh(labels, values, color=colors)
plt.gca().invert_yaxis()
plt.title("GNH Indicator Similarity (Pathway-weighted)")
plt.xlabel("Score")
plt.tight_layout()
return fig
# =========================
# 8) Gradio app
# =========================
SEQ_CHOICES = list(SEQUENCE_ALIASES.keys())
SEQ_MULTI_CHOICES = [k for k in SEQUENCE_ALIASES.keys() if k != "Auto (recommend)"]
def normalize_seq_keys(ui_labels: List[str]) -> List[str]:
keys = []
for lab in ui_labels:
k = SEQUENCE_ALIASES.get(lab, lab).lower()
keys.append(k)
return keys
def analyze(
text: str,
seq_choice: str,
boost_terms_raw: str,
boost_seq_labels: List[str],
limit_seq_labels: List[str],
boost_w: float,
limit_w: float,
):
if not text or not text.strip():
return (5.0, "neutral (0.0)", 5.0, "—", "—", "{}", None, None)
# 1) scores
sentiment = score_sentiment(text)
emotion, emo_conf = classify_emotion(text)
accomplishment = score_accomplishment(text)
# 2) UI selections
boost_seqs_user = normalize_seq_keys(boost_seq_labels)
limit_seqs_user = normalize_seq_keys(limit_seq_labels)
# 3) parse boosts/limits
boost_terms = [t.strip() for t in boost_terms_raw.split(",")] if boost_terms_raw else []
# --- NEW: Color cues from text (many-to-many) ---
boost_colors, limit_colors = infer_color_directives(text)
boost_seqs_from_colors = colors_to_seq_keys(boost_colors)
limit_seqs_from_colors = colors_to_seq_keys(limit_colors)
# combine lists (dedupe preserving order)
def _merge(a: List[str], b: List[str]) -> List[str]:
out = list(a)
for x in b:
if x not in out:
out.append(x)
return out
boost_seq_keys = _merge(boost_seqs_user, boost_seqs_from_colors)
limit_seq_keys = _merge(limit_seqs_user, limit_seqs_from_colors)
# 4) build context vector
context_vec = composite_vector(
base_text=text,
boost_terms=boost_terms,
boost_seq_keys=boost_seq_keys,
limit_seq_keys=limit_seq_keys,
boost_w=boost_w,
limit_w=limit_w,
)
# 5) choose pathway (Auto or specific)
chosen_key = SEQUENCE_ALIASES.get(seq_choice, "auto")
if chosen_key == "auto":
final_key, final_sim = best_sequence_for_vector(context_vec)
else:
final_key = chosen_key
phrase_for_final = PATHWAY_PHRASES.get(final_key, "")
final_sim = float(util.cos_sim(context_vec, encode_text(phrase_for_final)).item()) if phrase_for_final else 0.0
# 6) outputs
phrase = PATHWAY_PHRASES.get(final_key, "—")
img_path = sequence_to_image_path(final_key)
indicators = semantic_indicator_mapping_from_vec(context_vec, sentiment_score=sentiment)
fig = indicators_plot(indicators)
top5 = list(indicators.items())[:5]
top5_str = "\n".join(f"{k}: {v}" for k, v in top5)
# annotated meta
emo_str = f"{emotion} ({emo_conf:.3f})"
meta = f"{final_key} (relevance={final_sim:.3f})"
# show how color cues mapped
if boost_colors or limit_colors:
meta += f" | boost colors: {', '.join(boost_colors) or '—'} → {', '.join(boost_seqs_from_colors) or '—'}"
meta += f" | limit colors: {', '.join(limit_colors) or '—'} → {', '.join(limit_seqs_from_colors) or '—'}"
return (
sentiment, # number
emo_str, # text
accomplishment, # number
meta, # chosen pathway + relevance + color cue mapping
phrase, # pathway phrase
top5_str, # GNH top5
fig, # plot
img_path, # image path (optional)
)
with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
gr.Markdown("## RGB Root Matriz Color Plotter\n"
"Type a phrase. Choose a **Sequence** or keep **Auto** to recommend a pathway. "
"You’ll get sentiment, emotion, accomplishment, GNH bars, and the pathway phrase + image from the dataset.")
with gr.Row():
inp = gr.Textbox(
lines=4,
label="Input text",
placeholder="e.g., use gratitude from a return and inspiration from clarity to limit from red-pathway the pain from orange-pathway."
)
with gr.Row():
seq = gr.Dropdown(choices=SEQ_CHOICES, value="Auto (recommend)", label="Primary Pathway")
with gr.Row():
boost_terms = gr.Textbox(label="Boost terms (comma-separated)", placeholder="gratitude, inspiration, clarity")
with gr.Row():
boost_seqs = gr.CheckboxGroup(choices=[c for c in SEQ_CHOICES if c != "Auto (recommend)"],
label="Boost sequences (optional)")
limit_seqs = gr.CheckboxGroup(choices=[c for c in SEQ_CHOICES if c != "Auto (recommend)"],
label="Limit sequences (optional)")
with gr.Row():
boost_w = gr.Slider(0.0, 1.5, value=0.6, step=0.05, label="Boost weight")
limit_w = gr.Slider(0.0, 1.5, value=0.6, step=0.05, label="Limit weight")
btn = gr.Button("Analyze", variant="primary")
with gr.Row():
sent = gr.Number(label="Sentiment (1–10)")
emo = gr.Text(label="Emotion")
acc = gr.Number(label="Accomplishment (1–10)")
with gr.Row():
chosen = gr.Text(label="Chosen pathway (relevance + color mapping)")
phrase_out = gr.Text(label="Pathway phrase")
with gr.Row():
gnh_top = gr.Text(label="Top GNH Indicators (Top 5)")
gnh_plot = gr.Plot(label="GNH Similarity (Pathway-weighted)")
with gr.Row():
pathway_img = gr.Image(label="Pathway image", type="filepath")
btn.click(
fn=analyze,
inputs=[inp, seq, boost_terms, boost_seqs, limit_seqs, boost_w, limit_w],
outputs=[sent, emo, acc, chosen, phrase_out, gnh_top, gnh_plot, pathway_img]
)
if __name__ == "__main__":
demo.launch()
|