File size: 16,503 Bytes
dd6720a
2de35e1
617928b
 
dd6720a
 
 
617928b
2de35e1
617928b
dd6720a
617928b
2de35e1
dd6720a
 
617928b
 
 
dd6720a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617928b
 
 
dd6720a
2de35e1
dd6720a
 
 
 
 
617928b
 
 
dd6720a
 
 
 
 
 
 
 
 
 
 
 
 
617928b
dd6720a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617928b
2de35e1
617928b
 
 
2de35e1
617928b
 
 
ca33b05
617928b
ca33b05
617928b
 
 
 
 
ca33b05
 
617928b
 
 
 
 
 
 
 
 
 
 
 
ca33b05
 
617928b
 
2de35e1
 
617928b
2de35e1
 
 
617928b
2de35e1
 
 
 
 
617928b
 
 
 
2de35e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617928b
 
 
2de35e1
617928b
 
2de35e1
617928b
dd6720a
 
 
 
 
 
2de35e1
 
dd6720a
 
 
 
617928b
 
dd6720a
 
 
 
2de35e1
dd6720a
 
 
617928b
dd6720a
617928b
dd6720a
2de35e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6720a
 
2de35e1
 
dd6720a
 
 
 
 
617928b
2de35e1
617928b
2de35e1
 
 
 
617928b
2de35e1
 
 
617928b
2de35e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617928b
 
2de35e1
617928b
dd6720a
 
 
 
 
 
 
2de35e1
dd6720a
 
 
 
617928b
2de35e1
617928b
 
2de35e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6720a
2de35e1
617928b
 
dd6720a
 
 
617928b
2de35e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617928b
2de35e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6720a
 
 
 
2de35e1
 
 
 
 
 
 
 
dd6720a
2de35e1
 
 
 
 
 
 
 
dd6720a
 
617928b
2de35e1
617928b
 
 
dd6720a
2de35e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6720a
2de35e1
 
617928b
 
 
dd6720a
 
 
 
617928b
 
2de35e1
617928b
 
dd6720a
617928b
2de35e1
617928b
dd6720a
617928b
dd6720a
617928b
2de35e1
 
 
617928b
dd6720a
 
 
2de35e1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import os
import re
from typing import Dict, Tuple, List

import nltk
import spacy
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import pandas as pd
import gradio as gr

from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer, util

# =========================
# 0) Lightweight setup
# =========================
def ensure_spacy():
    try:
        return spacy.load("en_core_web_sm")
    except Exception:
        import spacy.cli
        spacy.cli.download("en_core_web_sm")
        return spacy.load("en_core_web_sm")

def ensure_nltk():
    try:
        nltk.data.find("tokenizers/punkt")
    except LookupError:
        nltk.download("punkt")

ensure_nltk()
nlp = ensure_spacy()

# =========================
# 1) Models (cached)
# =========================
sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
bert_sentiment = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")

emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)

# =========================
# 2) GNH definitions
# =========================
GNH_DOMAINS: Dict[str, str] = {
    "Mental Wellness": "mental health, emotional clarity, peace of mind",
    "Social Wellness": "relationships, community, friendship, social harmony",
    "Economic Wellness": "income, savings, financial stability, cost of living",
    "Workplace Wellness": "career, work-life balance, promotion, productivity",
    "Physical Wellness": "physical health, sleep, fitness, exercise",
    "Environmental Wellness": "green space, nature, environmental care",
    "Health": "healthcare, medical care, recovery, well-being",
    "Education Value": "learning, education, school, knowledge, wisdom",
    "Good Governance": "freedom, justice, fairness, democratic participation",
    "Living Standards": "housing, wealth, basic needs, affordability",
    "Cultural Diversity": "tradition, language, cultural expression, heritage",
    "Political Wellness": "rights, law, free speech, civic participation",
    "Ecological Diversity": "biodiversity, forest, ecosystem, wildlife",
}

GNH_COLORS: Dict[str, str] = {
    "Economic Wellness": "#808080",
    "Mental Wellness": "#ffc0cb",
    "Workplace Wellness": "#ffd700",
    "Physical Wellness": "#f5deb3",
    "Social Wellness": "#ffa500",
    "Political Wellness": "#ffffff",
    "Environmental Wellness": "#87ceeb",
    "Ecological Diversity": "#228B22",
    "Health": "#ff6347",
    "Good Governance": "#000000",
    "Education Value": "#8b4513",
    "Living Standards": "#ffff00",
    "Cultural Diversity": "#9370db",
}

# =========================
# 3) Pathways (CSV + images)
# =========================
CSV_PATH = "la matrice plus.csv"

# UI label → internal key
SEQUENCE_ALIASES = {
    "Auto (recommend)": "auto",
    "Direct": "direct",
    "Fem": "feminine",     
    "Knot": "knot",
    "Masc": "masculine",
    "Pain": "pain",
    "Prayer": "prayer",
    "Precise": "precise",
    "Practical": "practical",
    "Plot": "plot",
    "Spiritual": "spiritual",
    "Sad": "sad"
}

SEQUENCE_IMAGE_FILES = {
    "direct": "direct pathway.png",
    "feminine": "fem pathway.png",
    "knot": "knot pathway.png",
    "masc": "masc pathway.png",
    "pain": "pain pathway.png",
    "prayer": "prayer pathway.png",
    "precise": "precise pathway.png",
    "practical": "practical pathway.png",
    "plot": "plot pathway.png",
    "spiritual": "spiritual pathway.png",
    "sad": "sad pathway.png"
}

# ---- load pathway phrases + colors (many-to-many) ----
def load_pathway_info(csv_path: str):
    df = pd.read_csv(csv_path)
    keys_we_know = set(SEQUENCE_ALIASES.values()) - {"auto"}
    rows = df[df["color"].astype(str).str.lower().isin(keys_we_know)].copy()

    phrases: Dict[str, str] = {}
    seq_to_colors: Dict[str, List[str]] = {}
    color_to_seqs: Dict[str, List[str]] = {}

    # columns to stitch into a phrase (all except color/r/g/b)
    cols_for_phrase = [c for c in df.columns if c not in ("color", "r", "g", "b")]

    for _, row in rows.iterrows():
        key = str(row["color"]).strip().lower()

        # parse colors list from column 'r' (e.g., "red, orange")
        colors_field = str(row.get("r", "") or "")
        colors = [c.strip().lower() for c in re.split(r"[,\s]+", colors_field) if c.strip()]
        colors = list(dict.fromkeys(colors))  # dedupe, keep order
        seq_to_colors[key] = colors

        for c in colors:
            color_to_seqs.setdefault(c, [])
            if key not in color_to_seqs[c]:
                color_to_seqs[c].append(key)

        # phrase: join all non-null from the other columns (keeps "let's ..." fragments etc.)
        vals = []
        for c in cols_for_phrase:
            v = row.get(c)
            if pd.notna(v):
                vs = str(v).strip()
                if vs and vs.lower() != "nan":
                    vals.append(vs)
        phrase = " ".join(vals)
        phrase = " ".join(phrase.split())
        phrases[key] = phrase

    # color vocab for parsing "red-pathway" in text
    color_vocab = sorted(color_to_seqs.keys())
    return phrases, seq_to_colors, color_to_seqs, color_vocab

PATHWAY_PHRASES, SEQ_TO_COLORS, COLOR_TO_SEQS, COLOR_VOCAB = load_pathway_info(CSV_PATH)

def sequence_to_image_path(seq_key: str) -> str | None:
    fname = SEQUENCE_IMAGE_FILES.get(seq_key)
    return fname if (fname and os.path.exists(fname)) else None

# =========================
# 4) Scoring
# =========================
def classify_emotion(text: str) -> Tuple[str, float]:
    inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
    with torch.no_grad():
        logits = emotion_model(**inputs).logits
        probs = F.softmax(logits, dim=1).squeeze()
    labels = emotion_model.config.id2label
    idx = int(torch.argmax(probs).item())
    return labels[idx], float(probs[idx].item())

def score_sentiment(text: str) -> float:
    out = bert_sentiment(text[:512])[0]
    label, score = out["label"], out["score"]
    scaled = 5 + 5 * score if label == "POSITIVE" else 1 + 4 * (1 - score)
    return round(min(10, max(1, scaled)), 2)

def score_accomplishment(text: str) -> float:
    doc = nlp(text)
    score = 5.0
    key_phrases = {"finally", "told", "decided", "quit", "refused", "stood", "walked", "walked away", "returned", "return"}
    for token in doc:
        if token.text.lower() in key_phrases:
            score += 1.5
        if token.tag_ in {"VBD", "VBN"}:
            score += 0.5
    return round(min(10, max(1, score)), 2)

# =========================
# 5) Pathway-aware vector math
# =========================
def encode_text(t: str):
    return sbert_model.encode(t, convert_to_tensor=True)

def composite_vector(
    base_text: str,
    boost_terms: List[str],
    boost_seq_keys: List[str],
    limit_seq_keys: List[str],
    boost_w: float = 0.6,
    limit_w: float = 0.6,
):
    v = encode_text(base_text)

    for term in boost_terms:
        t = term.strip()
        if t:
            v = v + boost_w * encode_text(t)

    for key in boost_seq_keys:
        phrase = PATHWAY_PHRASES.get(key, "")
        if phrase:
            v = v + boost_w * encode_text(phrase)

    for key in limit_seq_keys:
        phrase = PATHWAY_PHRASES.get(key, "")
        if phrase:
            v = v - limit_w * encode_text(phrase)

    return v

def best_sequence_for_vector(vec) -> Tuple[str, float]:
    best_key, best_sim = None, -1.0
    for key, phrase in PATHWAY_PHRASES.items():
        if not phrase:
            continue
        sim = float(util.cos_sim(vec, encode_text(phrase)).item())
        if sim > best_sim:
            best_key, best_sim = key, sim
    return best_key or "direct", best_sim

def semantic_indicator_mapping_from_vec(vec, sentiment_score: float, sentiment_weight: float = 0.3) -> Dict[str, float]:
    out: Dict[str, float] = {}
    for label, desc in GNH_DOMAINS.items():
        desc_vec = encode_text(desc)
        sim = float(util.cos_sim(vec, desc_vec).item())
        sim = max(0.0, min(1.0, sim))
        blended = (1 - sentiment_weight) * sim + sentiment_weight * (sentiment_score / 10.0)
        out[label] = round(blended, 3)
    return dict(sorted(out.items(), key=lambda kv: -kv[1]))

# =========================
# 6) Color cues from free text (many-to-many)
# =========================
_COLOR_RE = re.compile(r"\b(" + "|".join(map(re.escape, COLOR_VOCAB)) + r")\s*(?:\-?\s*pathway)?\b", re.I)
_LIMIT_CUES = {"limit", "reduce", "lessen", "avoid", "diminish", "lower", "constrain", "suppress"}

def infer_color_directives(text: str) -> Tuple[List[str], List[str]]:
    """
    Parse '... limit ... red-pathway ...' → limit 'red'
    otherwise treat mentioned colors as boost.
    Returns (boost_colors, limit_colors) as lists of color strings.
    """
    tokens = re.findall(r"\w+|\S", text.lower())
    idxs = []
    for m in _COLOR_RE.finditer(text):
        start = m.start()
        # find token index closest to this span
        char_count = 0
        tok_index = 0
        for i, tok in enumerate(tokens):
            char_count += len(tok) + 1  # crude but ok
            if char_count > start:
                tok_index = i
                break
        idxs.append((tok_index, m.group(1).lower()))

    boost_colors, limit_colors = [], []
    for idx, col in idxs:
        # look back a small window for a limit cue
        window = tokens[max(0, idx-4):idx]
        if any(w in _LIMIT_CUES for w in window):
            limit_colors.append(col)
        else:
            boost_colors.append(col)
    # dedupe
    boost_colors = list(dict.fromkeys(boost_colors))
    limit_colors = list(dict.fromkeys(limit_colors))
    return boost_colors, limit_colors

def colors_to_seq_keys(colors: List[str]) -> List[str]:
    keys: List[str] = []
    for c in colors:
        for k in COLOR_TO_SEQS.get(c, []):
            if k not in keys:
                keys.append(k)
    return keys

# =========================
# 7) Plot helper
# =========================
def indicators_plot(indicators: Dict[str, float]):
    labels = list(indicators.keys())
    values = list(indicators.values())
    colors = [GNH_COLORS.get(label, "#cccccc") for label in labels]
    fig = plt.figure(figsize=(8, 5))
    plt.barh(labels, values, color=colors)
    plt.gca().invert_yaxis()
    plt.title("GNH Indicator Similarity (Pathway-weighted)")
    plt.xlabel("Score")
    plt.tight_layout()
    return fig

# =========================
# 8) Gradio app
# =========================
SEQ_CHOICES = list(SEQUENCE_ALIASES.keys())
SEQ_MULTI_CHOICES = [k for k in SEQUENCE_ALIASES.keys() if k != "Auto (recommend)"]

def normalize_seq_keys(ui_labels: List[str]) -> List[str]:
    keys = []
    for lab in ui_labels:
        k = SEQUENCE_ALIASES.get(lab, lab).lower()
        keys.append(k)
    return keys

def analyze(
    text: str,
    seq_choice: str,
    boost_terms_raw: str,
    boost_seq_labels: List[str],
    limit_seq_labels: List[str],
    boost_w: float,
    limit_w: float,
):
    if not text or not text.strip():
        return (5.0, "neutral (0.0)", 5.0, "—", "—", "{}", None, None)

    # 1) scores
    sentiment = score_sentiment(text)
    emotion, emo_conf = classify_emotion(text)
    accomplishment = score_accomplishment(text)

    # 2) UI selections
    boost_seqs_user = normalize_seq_keys(boost_seq_labels)
    limit_seqs_user = normalize_seq_keys(limit_seq_labels)

    # 3) parse boosts/limits
    boost_terms = [t.strip() for t in boost_terms_raw.split(",")] if boost_terms_raw else []

    # --- NEW: Color cues from text (many-to-many) ---
    boost_colors, limit_colors = infer_color_directives(text)
    boost_seqs_from_colors = colors_to_seq_keys(boost_colors)
    limit_seqs_from_colors = colors_to_seq_keys(limit_colors)

    # combine lists (dedupe preserving order)
    def _merge(a: List[str], b: List[str]) -> List[str]:
        out = list(a)
        for x in b:
            if x not in out:
                out.append(x)
        return out

    boost_seq_keys = _merge(boost_seqs_user, boost_seqs_from_colors)
    limit_seq_keys = _merge(limit_seqs_user, limit_seqs_from_colors)

    # 4) build context vector
    context_vec = composite_vector(
        base_text=text,
        boost_terms=boost_terms,
        boost_seq_keys=boost_seq_keys,
        limit_seq_keys=limit_seq_keys,
        boost_w=boost_w,
        limit_w=limit_w,
    )

    # 5) choose pathway (Auto or specific)
    chosen_key = SEQUENCE_ALIASES.get(seq_choice, "auto")
    if chosen_key == "auto":
        final_key, final_sim = best_sequence_for_vector(context_vec)
    else:
        final_key = chosen_key
        phrase_for_final = PATHWAY_PHRASES.get(final_key, "")
        final_sim = float(util.cos_sim(context_vec, encode_text(phrase_for_final)).item()) if phrase_for_final else 0.0

    # 6) outputs
    phrase = PATHWAY_PHRASES.get(final_key, "—")
    img_path = sequence_to_image_path(final_key)

    indicators = semantic_indicator_mapping_from_vec(context_vec, sentiment_score=sentiment)
    fig = indicators_plot(indicators)

    top5 = list(indicators.items())[:5]
    top5_str = "\n".join(f"{k}: {v}" for k, v in top5)

    # annotated meta
    emo_str = f"{emotion} ({emo_conf:.3f})"
    meta = f"{final_key} (relevance={final_sim:.3f})"
    # show how color cues mapped
    if boost_colors or limit_colors:
        meta += f" | boost colors: {', '.join(boost_colors) or '—'}{', '.join(boost_seqs_from_colors) or '—'}"
        meta += f" | limit colors: {', '.join(limit_colors) or '—'}{', '.join(limit_seqs_from_colors) or '—'}"

    return (
        sentiment,            # number
        emo_str,              # text
        accomplishment,       # number
        meta,                 # chosen pathway + relevance + color cue mapping
        phrase,               # pathway phrase
        top5_str,             # GNH top5
        fig,                  # plot
        img_path,             # image path (optional)
    )

with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
    gr.Markdown("## RGB Root Matriz Color Plotter\n"
                "Type a phrase. Choose a **Sequence** or keep **Auto** to recommend a pathway. "
                "You’ll get sentiment, emotion, accomplishment, GNH bars, and the pathway phrase + image from the dataset.")

    with gr.Row():
        inp = gr.Textbox(
            lines=4,
            label="Input text",
            placeholder="e.g., use gratitude from a return and inspiration from clarity to limit from red-pathway the pain from orange-pathway."
        )

    with gr.Row():
        seq = gr.Dropdown(choices=SEQ_CHOICES, value="Auto (recommend)", label="Primary Pathway")

    with gr.Row():
        boost_terms = gr.Textbox(label="Boost terms (comma-separated)", placeholder="gratitude, inspiration, clarity")
    with gr.Row():
        boost_seqs = gr.CheckboxGroup(choices=[c for c in SEQ_CHOICES if c != "Auto (recommend)"],
                                      label="Boost sequences (optional)")
        limit_seqs = gr.CheckboxGroup(choices=[c for c in SEQ_CHOICES if c != "Auto (recommend)"],
                                      label="Limit sequences (optional)")

    with gr.Row():
        boost_w = gr.Slider(0.0, 1.5, value=0.6, step=0.05, label="Boost weight")
        limit_w = gr.Slider(0.0, 1.5, value=0.6, step=0.05, label="Limit weight")

    btn = gr.Button("Analyze", variant="primary")

    with gr.Row():
        sent = gr.Number(label="Sentiment (1–10)")
        emo = gr.Text(label="Emotion")
        acc = gr.Number(label="Accomplishment (1–10)")

    with gr.Row():
        chosen = gr.Text(label="Chosen pathway (relevance + color mapping)")
        phrase_out = gr.Text(label="Pathway phrase")

    with gr.Row():
        gnh_top = gr.Text(label="Top GNH Indicators (Top 5)")
        gnh_plot = gr.Plot(label="GNH Similarity (Pathway-weighted)")

    with gr.Row():
        pathway_img = gr.Image(label="Pathway image", type="filepath")

    btn.click(
        fn=analyze,
        inputs=[inp, seq, boost_terms, boost_seqs, limit_seqs, boost_w, limit_w],
        outputs=[sent, emo, acc, chosen, phrase_out, gnh_top, gnh_plot, pathway_img]
    )

if __name__ == "__main__":
    demo.launch()