polymer-aging-ml / scripts /create_demo_dataset.py
devjas1
(FEAT/DATASETS)[Demo Dataset Generation Script for ML Training]: Automate creation of synthetic polymer spectra for stable and weathered classes
a602039
raw
history blame
4.58 kB
"""
Generate demo datasets for testing the training functionality.
"""
import numpy as np
from pathlib import Path
import sys
import os
# Add project root to path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
def generate_synthetic_spectrum(
wavenumbers, base_intensity=0.5, noise_level=0.05, peaks=None
):
"""Generate a synthetic spectrum with specified characteristics"""
spectrum = np.full_like(wavenumbers, base_intensity)
# Add some peaks
if peaks is None:
peaks = [
(1000, 0.3, 50),
(1500, 0.5, 80),
(2000, 0.2, 40),
] # (center, height, width)
for center, height, width in peaks:
peak = height * np.exp(-(((wavenumbers - center) / width) ** 2))
spectrum += peak
# Add noise
spectrum += np.random.normal(0, noise_level, len(wavenumbers))
# Ensure positive values
spectrum = np.maximum(spectrum, 0.01)
return spectrum
def create_demo_datasets():
"""Create demo datasets for training"""
# Define wavenumber range (typical for Raman)
wavenumbers = np.linspace(400, 3500, 200)
# Create stable polymer samples
stable_dir = Path("datasets/demo_dataset/stable")
stable_dir.mkdir(parents=True, exist_ok=True)
print("Generating stable polymer samples...")
for i in range(20):
# Stable polymers - higher intensity, sharper peaks
stable_peaks = [
(
800 + np.random.normal(0, 20),
0.4 + np.random.normal(0, 0.05),
30 + np.random.normal(0, 5),
),
(
1200 + np.random.normal(0, 30),
0.6 + np.random.normal(0, 0.08),
40 + np.random.normal(0, 8),
),
(
1600 + np.random.normal(0, 25),
0.3 + np.random.normal(0, 0.04),
35 + np.random.normal(0, 6),
),
(
2900 + np.random.normal(0, 40),
0.8 + np.random.normal(0, 0.1),
60 + np.random.normal(0, 10),
),
]
spectrum = generate_synthetic_spectrum(
wavenumbers,
base_intensity=0.4 + np.random.normal(0, 0.05),
noise_level=0.02,
peaks=stable_peaks,
)
# Save as two-column format
data = np.column_stack([wavenumbers, spectrum])
np.savetxt(stable_dir / f"stable_sample_{i:02d}.txt", data, fmt="%.6f")
# Create weathered polymer samples
weathered_dir = Path("datasets/demo_dataset/weathered")
weathered_dir.mkdir(parents=True, exist_ok=True)
print("Generating weathered polymer samples...")
for i in range(20):
# Weathered polymers - lower intensity, broader peaks, additional oxidation peaks
weathered_peaks = [
(
800 + np.random.normal(0, 30),
0.2 + np.random.normal(0, 0.04),
45 + np.random.normal(0, 10),
),
(
1200 + np.random.normal(0, 40),
0.3 + np.random.normal(0, 0.06),
55 + np.random.normal(0, 12),
),
(
1600 + np.random.normal(0, 35),
0.15 + np.random.normal(0, 0.03),
50 + np.random.normal(0, 8),
),
(
1720 + np.random.normal(0, 20),
0.25 + np.random.normal(0, 0.04),
40 + np.random.normal(0, 7),
), # Oxidation peak
(
2900 + np.random.normal(0, 50),
0.4 + np.random.normal(0, 0.08),
80 + np.random.normal(0, 15),
),
]
spectrum = generate_synthetic_spectrum(
wavenumbers,
base_intensity=0.25 + np.random.normal(0, 0.04),
noise_level=0.03,
peaks=weathered_peaks,
)
# Save as two-column format
data = np.column_stack([wavenumbers, spectrum])
np.savetxt(weathered_dir / f"weathered_sample_{i:02d}.txt", data, fmt="%.6f")
print(f"✅ Demo dataset created:")
print(f" Stable samples: {len(list(stable_dir.glob('*.txt')))}")
print(f" Weathered samples: {len(list(weathered_dir.glob('*.txt')))}")
print(f" Location: datasets/demo_dataset/")
if __name__ == "__main__":
create_demo_datasets()