Spaces:
Sleeping
Sleeping
devjas1
(FEAT)[Refactor Confidence Visualization and Update CSS]: Remove legacy confidence progress HTML function, enhance softmax confidence calculation, and implement theme-aware custom styles for better UI consistency.
7bc29cd
| """Confidence calculation and visualization utilities. | |
| Provides normalized softmax confidence and color-coded badges""" | |
| from typing import Tuple, List | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| def calculate_softmax_confidence( | |
| logits: torch.Tensor, | |
| ) -> Tuple[np.ndarray, float, str, str]: | |
| """Calculate normalized confidence using softmax | |
| Args: | |
| logits: Raw model logits tensor | |
| Returns: | |
| Tuple of (probabilities, max_confidence, confidence_level, confidence_emoji) | |
| """ | |
| # ===Apply softmax to get probabilities=== | |
| probs_np = F.softmax(logits, dim=1).cpu().numpy().flatten() | |
| # ===Get maximum probability as confidence=== | |
| max_confidence = float(np.max(probs_np)) | |
| # ===Determine confidence level and emoji=== | |
| if max_confidence >= 0.80: | |
| confidence_level = "HIGH" | |
| confidence_emoji = "π’" | |
| elif max_confidence >= 0.60: | |
| confidence_level = "MEDIUM" | |
| confidence_emoji = "π‘" | |
| else: | |
| confidence_level = "LOW" | |
| confidence_emoji = "π΄" | |
| return probs_np, max_confidence, confidence_level, confidence_emoji | |
| def get_confidence_badge(confidence: float) -> Tuple[str, str]: | |
| """Get confidence badge emoji and level description | |
| Args: | |
| confidence: Confidence value (0-1) | |
| Returns: | |
| Tuple of (emoji, level) | |
| """ | |
| if confidence >= 0.80: | |
| return "π’", "HIGH" | |
| elif confidence >= 0.60: | |
| return "π‘", "MEDIUM" | |
| else: | |
| return "π΄", "LOW" | |
| def format_confidence_display(confidence: float, level: str, emoji: str) -> str: | |
| """ | |
| Format confidence for display in UI | |
| Args: | |
| confidence: Confidence value (0-1) | |
| level: Confidence level (HIGH/MEDIUM/LOW) | |
| emoji: Confidence emoji | |
| Returns: | |
| Formatted confidence string | |
| """ | |
| return f"{emoji} **{level}** ({confidence:.1%})" | |
| def calculate_legacy_confidence(logits_list: List[float]) -> Tuple[float, str, str]: | |
| """ | |
| Calculate confidence using legacy logit margin method for backward compatibility | |
| Args: | |
| logits_list: List of raw logits | |
| Returns: | |
| Tuple of (margin, confidence_level, confidence_emoji) | |
| """ | |
| if len(logits_list) < 2: | |
| return 0.0, "LOW", "π΄" | |
| logits_array = np.array(logits_list) | |
| sorted_logits = np.sort(logits_array)[::-1] # Descending order | |
| margin = sorted_logits[0] - sorted_logits[1] | |
| # ===Define thresholds for margin-based confidence=== | |
| if margin >= 2.0: | |
| confidence_level = "HIGH" | |
| confidence_emoji = "π’" | |
| elif margin >= 1.0: | |
| confidence_level = "MEDIUM" | |
| confidence_emoji = "π‘" | |
| else: | |
| confidence_level = "LOW" | |
| confidence_emoji = "π΄" | |
| return margin, confidence_level, confidence_emoji | |