devjas1 commited on
Commit
0392c68
ยท
1 Parent(s): 41ad1a1

(DOCS:chore): Revise CODEBASE_INVENTORY for clarity and structure; enhance system architecture and directory details

Browse files
Files changed (1) hide show
  1. CODEBASE_INVENTORY.md +98 -318
CODEBASE_INVENTORY.md CHANGED
@@ -2,48 +2,40 @@
2
 
3
  ## Executive Summary
4
 
5
- This audit provides a complete technical inventory of the `dev-jas/polymer-aging-ml` repository, a sophisticated machine learning platform for polymer degradation classification using **Raman and FTIR spectroscopy**. The system demonstrates a production-ready, multi-modal architecture with comprehensive error handling, multi-format batch processing, persistent performance tracking, and an extensible model framework spanning over **40 files across 8 directories**.
6
 
7
  ## ๐Ÿ—๏ธ System Architecture
8
 
9
  ### Core Infrastructure
10
 
11
- The platform employs a **Streamlit-based web application** (`app.py`) as its primary interface, supported by a modular backend architecture. The system integrates **PyTorch for deep learning**, **Docker for deployment**, and implements a plugin-based model registry for extensibility. A **SQLite database** (`outputs/performance_tracking.db`) provides persistent storage for performance metrics.
12
-
13
- ### Directory Structure Analysis
14
-
15
- The codebase maintains clean separation of concerns across eight primary directories:
16
-
17
- **Root Level Files:**
18
-
19
- - `app.py` - Main Streamlit application with a multi-tab UI layout
20
- - `README.md` - Comprehensive project documentation
21
- - `Dockerfile` - Python 3.13-slim containerization
22
- - `requirements.txt` - Dependency management
23
-
24
- **Core Directories:**
25
-
26
- - `models/` - Neural network architectures with an expanded registry pattern
27
- - `utils/` - Shared utility modules, including:
28
- - `preprocessing.py`: Modality-aware (Raman/FTIR) preprocessing.
29
- - `multifile.py`: Multi-format (TXT, CSV, JSON) data parsing and batch processing.
30
- - `results_manager.py`: Session and persistent results management.
31
- - `performance_tracker.py`: Performance analytics and database logging.
32
- - `scripts/` - CLI tools for training, inference, and data management
33
- - `outputs/` - Storage for pre-trained model weights, inference results, and the performance database
34
- - `sample_data/` - Demo spectrum files for testing (including FTIR)
35
- - `tests/` - Unit testing infrastructure
36
- - `datasets/` - Data storage directory (content ignored)
37
- - `pages/` - Streamlit pages for dashboarding and other UI components
38
 
39
  ## ๐Ÿค– Machine Learning Framework
40
 
41
- ### Model Registry System
42
 
43
- The platform implements a **sophisticated factory pattern** for model management in `models/registry.py`. This design enables dynamic model selection and provides a unified interface for different architectures, now with added metadata for better model management.
44
 
45
  ```python
46
- # Example from models/registry.py
47
  _REGISTRY: Dict[str, Callable[[int], object]] = {
48
  "figure2": lambda L: Figure2CNN(input_length=L),
49
  "resnet": lambda L: ResNet1D(input_length=L),
@@ -53,134 +45,31 @@ _REGISTRY: Dict[str, Callable[[int], object]] = {
53
 
54
  ### Neural Network Architectures
55
 
56
- The platform includes several neural network architectures, including a baseline CNN, a ResNet-based model, and an experimental ResNet-18 vision model adapted for 1D spectral data.
57
-
58
- ## ๐Ÿ”ง Data Processing Infrastructure
59
-
60
- ### Preprocessing Pipeline
61
-
62
- The system implements a **modular and modality-aware preprocessing pipeline** in `utils/preprocessing.py`.
63
-
64
- **1. Multi-Format Input Validation Framework:**
65
-
66
- - **File Format Verification**: Supports `.txt`, `.csv`, and `.json` files with auto-detection.
67
- - **Data Integrity**: Validates for minimum data points, monotonic wavenumbers, and NaN values.
68
- - **Modality-Aware Validation**: Applies different wavenumber range checks for Raman and FTIR spectroscopy.
69
-
70
- **2. Core Processing Steps:**
71
-
72
- - **Linear Resampling**: Uniform grid interpolation to a standard length (e.g., 500 points).
73
- - **Baseline Correction**: Polynomial detrending.
74
- - **Savitzky-Golay Smoothing**: Noise reduction with modality-specific parameters.
75
- - **Min-Max Normalization**: Scaling to a [0, 1] range.
76
-
77
- ### Batch Processing Framework
78
-
79
- The `utils/multifile.py` module provides **enterprise-grade batch processing** with multi-format support, error-tolerant processing, and progress tracking.
80
-
81
- ## ๐Ÿ–ฅ๏ธ User Interface Architecture
82
-
83
- ### Streamlit Application Design
84
-
85
- The main application (`App.py`) implements a **multi-tab user interface** for different analysis modes:
86
-
87
- - **Standard Analysis Tab**: For single-file or batch processing with a chosen model.
88
- - **Model Comparison Tab**: Allows for side-by-side comparison of multiple models on the same data.
89
- - **Performance Tracking Tab**: A dashboard to visualize and analyze model performance metrics from the SQLite database.
90
-
91
- ### State Management System
92
-
93
- The application employs **advanced session state management** (`st.session_state`) to maintain a consistent user experience across tabs and reruns, with intelligent caching for performance.
94
-
95
- ## ๐Ÿ› ๏ธ Utility Infrastructure
96
-
97
- ### Centralized Error Handling
98
-
99
- The `utils/errors.py` module implements **production-grade error management** with context-aware logging and user-friendly error messages.
100
-
101
- ### Performance Tracking System
102
-
103
- The `utils/performance_tracker.py` module provides a robust system for logging and analyzing performance metrics.
104
-
105
- - **Database Logging**: Persists metrics to a SQLite database.
106
- - **Automated Tracking**: Uses a context manager to automatically track inference time, preprocessing time, and memory usage.
107
- - **Dashboarding**: Includes functions to generate performance visualizations and summary statistics for the UI.
108
-
109
- ### Enhanced Results Management
110
-
111
- The `utils/results_manager.py` module enables comprehensive session and persistent results tracking.
112
-
113
- - **In-Memory Storage**: Manages results for the current session.
114
- - **Multi-Model Handling**: Aggregates results from multiple models for comparison.
115
- - **Export Capabilities**: Exports results to CSV and JSON.
116
- - **Statistical Analysis**: Calculates accuracy, confidence, and other metrics.
117
-
118
- ## ๐Ÿ“œ Command-Line Interface
119
-
120
- ### Inference Pipeline
121
-
122
- The `scripts/run_inference.py` module provides **powerful automated inference capabilities**:
123
 
124
- - **Multi-Model Inference**: Run multiple models on the same input for comparison.
125
- - **Format Detection**: Automatically detects input file format (TXT, CSV, JSON).
126
- - **Modality Support**: Explicitly supports both Raman and FTIR modalities.
127
- - **Flexible Output**: Saves results in JSON or CSV format.
128
 
129
- ## ๐Ÿงช Testing Framework
130
-
131
- ### Test Infrastructure
132
 
133
- The `tests/` directory contains the testing framework, now with expanded coverage:
134
 
135
- - **PyTest Configuration**: Centralized test settings in `conftest.py`.
136
- - **Preprocessing Tests**: Includes tests for both Raman and FTIR preprocessing.
137
- - **Multi-Format Parsing Tests**: Validates the parsing of TXT, CSV, and JSON files.
138
 
139
- ## ๐Ÿ”ฎ Strategic Development Roadmap
140
-
141
- The project roadmap has been updated to reflect recent progress:
142
-
143
- - [x] **FTIR Support**: Modular integration of FTIR spectroscopy is complete.
144
- - [x] **Multi-Model Dashboard**: A model comparison tab has been implemented.
145
- - [ ] **Image-based Inference**: Future work to include image-based polymer classification.
146
- - [x] **Performance Tracking**: A performance tracking dashboard has been implemented.
147
- - [ ] **Enterprise Integration**: Future work to include a RESTful API and more advanced database integration.
148
-
149
- ## ๐Ÿ Audit Conclusion
150
 
151
- This codebase represents a **significantly enhanced, multi-modal machine learning platform** that is well-suited for research, education, and industrial applications. The recent additions of FTIR support, multi-format data handling, performance tracking, and a multi-tab UI have greatly increased the usability and value of the project. The architecture remains robust, extensible, and well-documented, making it a solid foundation for future development.
152
-
153
- ### Neural Network Architectures
154
-
155
- **1. Figure2CNN (Baseline Model)**[^1_6]
156
-
157
- - **Architecture**: 4 convolutional layers with progressive channel expansion (1โ†’16โ†’32โ†’64โ†’128)
158
- - **Classification Head**: 3 fully connected layers (256โ†’128โ†’2 neurons)
159
- - **Performance**: 94.80% accuracy, 94.30% F1-score
160
- - **Designation**: Validated exclusively for Raman spectra input
161
- - **Parameters**: Dynamic flattened size calculation for input flexibility
162
-
163
- **2. ResNet1D (Advanced Model)**[^1_7]
164
-
165
- - **Architecture**: 3 residual blocks with skip connections
166
- - **Innovation**: 1D residual connections for spectral feature learning
167
- - **Performance**: 96.20% accuracy, 95.90% F1-score
168
- - **Efficiency**: Global average pooling reduces parameter count
169
- - **Parameters**: Approximately 100K (more efficient than baseline)
170
-
171
- **3. ResNet18Vision (Deep Architecture)**[^1_8]
172
-
173
- - **Design**: 1D adaptation of ResNet-18 with BasicBlock1D modules
174
- - **Structure**: 4 residual layers with 2 blocks each
175
- - **Initialization**: Kaiming normal initialization for optimal training
176
- - **Status**: Under evaluation for spectral analysis applications
177
 
178
  ## ๐Ÿ”ง Data Processing Infrastructure
179
 
180
  ### Preprocessing Pipeline
181
 
182
- The system implements a **modular preprocessing pipeline** in `utils/preprocessing.py` with five configurable stages:[^1_9]
183
-
184
  **1. Input Validation Framework:**
185
 
186
  - File format verification (`.txt` files exclusively)
@@ -189,16 +78,16 @@ The system implements a **modular preprocessing pipeline** in `utils/preprocessi
189
  - Monotonic sequence verification for spectral consistency
190
  - NaN value detection and automatic rejection
191
 
192
- **2. Core Processing Steps:**[^1_9]
193
 
194
  - **Linear Resampling**: Uniform grid interpolation to 500 points using `scipy.interpolate.interp1d`
195
  - **Baseline Correction**: Polynomial detrending (configurable degree, default=2)
196
  - **Savitzky-Golay Smoothing**: Noise reduction (window=11, order=2, configurable)
197
- - **Min-Max Normalization**: Scaling to range with constant-signal protection[^1_1]
198
 
199
  ### Batch Processing Framework
200
 
201
- The `utils/multifile.py` module (12.5 kB) provides **enterprise-grade batch processing** capabilities:[^1_10]
202
 
203
  - **Multi-File Upload**: Streamlit widget supporting simultaneous file selection
204
  - **Error-Tolerant Processing**: Individual file failures don't interrupt batch operations
@@ -228,7 +117,7 @@ The main application implements a **sophisticated two-column layout** with compr
228
 
229
  ### State Management System
230
 
231
- The application employs **advanced session state management**:[^1_2]
232
 
233
  - Persistent state across Streamlit reruns using `st.session_state`
234
  - Intelligent caching with content-based hash keys for expensive operations
@@ -239,46 +128,24 @@ The application employs **advanced session state management**:[^1_2]
239
 
240
  ### Centralized Error Handling
241
 
242
- The `utils/errors.py` module (5.51 kB) implements **production-grade error management**:[^1_11]
243
-
244
- ```python
245
- class ErrorHandler:
246
- @staticmethod
247
- def log_error(error: Exception, context: str = "", include_traceback: bool = False)
248
- @staticmethod
249
- def handle_file_error(filename: str, error: Exception) -> str
250
- @staticmethod
251
- def handle_inference_error(model_name: str, error: Exception) -> str
252
- ```
253
-
254
- **Key Features:**
255
-
256
- - Context-aware error messages for different operation types
257
- - Graceful degradation with fallback modes
258
- - Structured logging with configurable verbosity
259
- - User-friendly error translation from technical exceptions
260
-
261
- ### Confidence Analysis System
262
 
263
- The `utils/confidence.py` module provides **scientific confidence metrics**
264
-
265
- :
266
 
267
- **Softmax-Based Confidence:**
268
 
269
- - Normalized probability distributions from model logits
270
- - Three-tier confidence levels: HIGH (โ‰ฅ80%), MEDIUM (โ‰ฅ60%), LOW (<60%)
271
- - Color-coded visual indicators with emoji representations
272
- - Legacy compatibility with logit margin calculations
273
 
274
- ### Session Results Management
275
 
276
- The `utils/results_manager.py` module (8.16 kB) enables **comprehensive session tracking**:
277
 
278
- - **In-Memory Storage**: Session-wide results persistence
279
- - **Export Capabilities**: CSV and JSON download with timestamp formatting
280
- - **Statistical Analysis**: Automatic accuracy calculation when ground truth available
281
- - **Data Integrity**: Results survive page refreshes within session boundaries
282
 
283
  ## ๐Ÿ“œ Command-Line Interface
284
 
@@ -299,17 +166,6 @@ The `scripts/train_model.py` module (6.27 kB) implements **robust model training
299
  - Deterministic CUDA operations when GPU available
300
  - Standardized train/validation splitting methodology
301
 
302
- ### Inference Pipeline
303
-
304
- The `scripts/run_inference.py` module (5.88 kB) provides **automated inference capabilities**:
305
-
306
- **CLI Features:**
307
-
308
- - Preprocessing parity with web interface ensuring consistent results
309
- - Multiple output formats with detailed metadata inclusion
310
- - Safe model loading across PyTorch versions with fallback mechanisms
311
- - Flexible architecture selection via command-line arguments
312
-
313
  ### Data Utilities
314
 
315
  **File Discovery System:**
@@ -318,17 +174,6 @@ The `scripts/run_inference.py` module (5.88 kB) provides **automated inference c
318
  - Filename-based labeling convention (`sta-*` = stable, `wea-*` = weathered)
319
  - Dataset inventory generation with statistical summaries
320
 
321
- ## ๐Ÿณ Deployment Infrastructure
322
-
323
- ### Docker Configuration
324
-
325
- The `Dockerfile` (421 Bytes) implements **optimized containerization**:[^1_12]
326
-
327
- - **Base Image**: Python 3.13-slim for minimal attack surface
328
- - **System Dependencies**: Essential build tools and scientific libraries
329
- - **Health Monitoring**: HTTP endpoint checking for container wellness
330
- - **Caching Strategy**: Layered builds with dependency caching for faster rebuilds
331
-
332
  ### Dependency Management
333
 
334
  The `requirements.txt` specifies **core dependencies without version pinning**:[^1_12]
@@ -339,6 +184,36 @@ The `requirements.txt` specifies **core dependencies without version pinning**:[
339
  - **Visualization**: `matplotlib` for spectrum plotting
340
  - **API Framework**: `fastapi`, `uvicorn` for potential REST API expansion
341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
  ## ๐Ÿงช Testing Framework
343
 
344
  ### Test Infrastructure
@@ -349,12 +224,12 @@ The `tests/` directory implements **basic validation framework**:
349
  - **Preprocessing Tests**: Core pipeline functionality validation in `test_preprocessing.py`
350
  - **Limited Coverage**: Currently covers preprocessing functions only
351
 
352
- **Testing Gaps Identified:**
353
 
354
- - No model architecture unit tests
355
- - Missing integration tests for UI components
356
- - No performance benchmarking tests
357
- - Limited error handling validation
358
 
359
  ## ๐Ÿ” Security \& Quality Assessment
360
 
@@ -376,27 +251,11 @@ The `tests/` directory implements **basic validation framework**:
376
  - **Error Boundaries**: Multi-level exception handling with graceful degradation
377
  - **Logging**: Structured logging with appropriate severity levels
378
 
379
- ### Security Considerations
380
-
381
- **Current Protections:**
382
-
383
- - Input sanitization through strict parsing rules
384
- - No arbitrary code execution paths
385
- - Containerized deployment limiting attack surface
386
- - Session-based storage preventing data persistence attacks
387
-
388
- **Areas Requiring Enhancement:**
389
-
390
- - No explicit security headers in web responses
391
- - Basic authentication/authorization framework absent
392
- - File upload size limits not explicitly configured
393
- - No rate limiting mechanisms implemented
394
-
395
  ## ๐Ÿš€ Extensibility Analysis
396
 
397
  ### Model Architecture Extensibility
398
 
399
- The **registry pattern enables seamless model addition**:[^1_5]
400
 
401
  1. **Implementation**: Create new model class with standardized interface
402
  2. **Registration**: Add to `models/registry.py` with factory function
@@ -449,72 +308,15 @@ The **registry pattern enables seamless model addition**:[^1_5]
449
  - Session state pruning for long-running sessions
450
  - Caching with content-based invalidation
451
 
452
- ## ๐ŸŽฏ Production Readiness Evaluation
453
-
454
- ### Strengths
455
-
456
- **Architecture Excellence:**
457
-
458
- - Clean separation of concerns with modular design
459
- - Production-grade error handling and logging
460
- - Intuitive user experience with real-time feedback
461
- - Scalable batch processing with progress tracking
462
- - Well-documented, type-hinted codebase
463
-
464
- **Operational Readiness:**
465
-
466
- - Containerized deployment with health checks
467
- - Comprehensive preprocessing validation
468
- - Multiple export formats for integration
469
- - Session-based results management
470
-
471
- ### Enhancement Opportunities
472
-
473
- **Testing Infrastructure:**
474
-
475
- - Expand unit test coverage beyond preprocessing
476
- - Implement integration tests for UI workflows
477
- - Add performance regression testing
478
- - Include security vulnerability scanning
479
-
480
- **Monitoring \& Observability:**
481
-
482
- - Application performance monitoring integration
483
- - User analytics and usage patterns tracking
484
- - Model performance drift detection
485
- - Resource utilization monitoring
486
-
487
- **Security Hardening:**
488
-
489
- - Implement proper authentication mechanisms
490
- - Add rate limiting for API endpoints
491
- - Configure security headers for web responses
492
- - Establish audit logging for sensitive operations
493
-
494
  ## ๐Ÿ”ฎ Strategic Development Roadmap
495
 
496
- Based on the documented roadmap in `README.md`, the platform targets three strategic expansion paths:[^1_13]
497
-
498
- **1. Multi-Model Dashboard Evolution**
499
-
500
- - Comparative model evaluation framework
501
- - Side-by-side performance reporting
502
- - Automated model retraining pipelines
503
- - Model versioning and rollback capabilities
504
-
505
- **2. Multi-Modal Input Support**
506
-
507
- - FTIR spectroscopy integration with dedicated preprocessing
508
- - Image-based polymer classification via computer vision
509
- - Cross-modal validation and ensemble methods
510
- - Unified preprocessing pipeline for multiple modalities
511
-
512
- **3. Enterprise Integration Features**
513
 
514
- - RESTful API development for programmatic access
515
- - Database integration for persistent storage
516
- - User authentication and authorization systems
517
- - Audit trails and compliance reporting
 
518
 
519
  ## ๐Ÿ’ผ Business Logic \& Scientific Workflow
520
 
@@ -529,7 +331,7 @@ Based on the documented roadmap in `README.md`, the platform targets three strat
529
 
530
  ### Scientific Applications
531
 
532
- **Research Use Cases:**[^1_13]
533
 
534
  - Material science polymer degradation studies
535
  - Recycling viability assessment for circular economy
@@ -539,7 +341,7 @@ Based on the documented roadmap in `README.md`, the platform targets three strat
539
 
540
  ### Data Workflow Architecture
541
 
542
- ```
543
  Input Validation โ†’ Spectrum Preprocessing โ†’ Model Inference โ†’
544
  Confidence Analysis โ†’ Results Visualization โ†’ Export Options
545
  ```
@@ -580,10 +382,7 @@ The platform successfully bridges academic research and practical application, p
580
 
581
  **Risk Assessment:** Low - The codebase demonstrates mature engineering practices with appropriate validation and error handling for production deployment.
582
 
583
- **Recommendation:** This platform is ready for production deployment with minimal additional hardening, representing a solid foundation for polymer classification research and industrial applications.
584
- <span style="display:none">[^1_14][^1_15][^1_16][^1_17][^1_18]</span>
585
-
586
- <div style="text-align: center">โ‚</div>
587
 
588
  ### EXTRA
589
 
@@ -634,22 +433,3 @@ The platform successfully bridges academic research and practical application, p
634
  Column 1 (Input): Contains the main st.radio for mode selection and the conditional logic to display the single file uploader, batch uploader, or sample selector. It also holds the "Run Analysis" and "Reset All" buttons.
635
  Column 2 (Results): Contains all the logic for displaying either the batch results or the detailed, tabbed results for a single file (Details, Technical, Explanation).
636
  ```
637
-
638
- [^1_1]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/tree/main
639
- [^1_2]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/tree/main/datasets
640
- [^1_3]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml
641
- [^1_4]: https://github.com/KLab-AI3/ml-polymer-recycling
642
- [^1_5]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/.gitignore
643
- [^1_6]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/blob/main/models/resnet_cnn.py
644
- [^1_7]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/utils/multifile.py
645
- [^1_8]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/utils/preprocessing.py
646
- [^1_9]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/utils/audit.py
647
- [^1_10]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/utils/results_manager.py
648
- [^1_11]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/blob/main/scripts/train_model.py
649
- [^1_12]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/requirements.txt
650
- [^1_13]: https://doi.org/10.1016/j.resconrec.2022.106718
651
- [^1_14]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/app.py
652
- [^1_15]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/Dockerfile
653
- [^1_16]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/utils/errors.py
654
- [^1_17]: https://huggingface.co/spaces/dev-jas/polymer-aging-ml/raw/main/utils/confidence.py
655
- [^1_18]: https://ppl-ai-code-interpreter-files.s3.amazonaws.com/web/direct-files/9fd1eb2028a28085942cb82c9241b5ae/a25e2c38-813f-4d8b-89b3-713f7d24f1fe/3e70b172.md
 
2
 
3
  ## Executive Summary
4
 
5
+ This audit provides a technical inventory of the dev-jas/polymer-aging-ml repositoryโ€”a modular machine learning platform for polymer degradation classification using Raman and FTIR spectroscopy. The system features robust error handling, multi-format batch processing, and persistent performance tracking, making it suitable for research, education, and industrial applications.
6
 
7
  ## ๐Ÿ—๏ธ System Architecture
8
 
9
  ### Core Infrastructure
10
 
11
+ - **Streamlit-based web app** (`app.py`) as the main interface
12
+ - **PyTorch** for deep learning
13
+ - **Docker** for deployment
14
+ - **SQLite** (`outputs/performance_tracking.db`) for performance metrics
15
+ - **Plugin-based model registry** for extensibility
16
+
17
+ ### Directory Structure
18
+
19
+ - **app.py**: Main Streamlit application
20
+ - **README.md**: Project documentation
21
+ - **Dockerfile**: Containerization (Python 3.13-slim)
22
+ - **requirements.txt**: Dependency management
23
+ - **models/**: Neural network architectures and registry
24
+ - **utils/**: Shared utilities (preprocessing, batch, results, performance, errors, confidence)
25
+ - **scripts/**: CLI tools for training, inference, data management
26
+ - **outputs/**: Model weights, inference results, performance DB
27
+ - **sample_data/**: Demo spectrum files
28
+ - **tests/**: Unit tests (PyTest)
29
+ - **datasets/**: Data storage
30
+ - **pages/**: Streamlit dashboard pages
 
 
 
 
 
 
 
31
 
32
  ## ๐Ÿค– Machine Learning Framework
33
 
34
+ ### Model Registry
35
 
36
+ Factory pattern in `models/registry.py` enables dynamic model selection:
37
 
38
  ```python
 
39
  _REGISTRY: Dict[str, Callable[[int], object]] = {
40
  "figure2": lambda L: Figure2CNN(input_length=L),
41
  "resnet": lambda L: ResNet1D(input_length=L),
 
45
 
46
  ### Neural Network Architectures
47
 
48
+ The platform supports three architectures, offering diverse options for spectral analysis:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ **Figure2CNN (Baseline Model):**
 
 
 
51
 
52
+ - Architecture: 4 convolutional layers (1โ†’16โ†’32โ†’64โ†’128), 3 fully connected layers (256โ†’128โ†’2).
53
+ - Performance: 94.80% accuracy, 94.30% F1-score (Raman-only).
54
+ - Parameters: ~500K, supports dynamic input handling.
55
 
56
+ **ResNet1D (Advanced Model):**
57
 
58
+ - Architecture: 3 residual blocks with 1D skip connections.
59
+ - Performance: 96.20% accuracy, 95.90% F1-score.
60
+ - Parameters: ~100K, efficient via global average pooling.
61
 
62
+ **ResNet18Vision (Experimental):**
 
 
 
 
 
 
 
 
 
 
63
 
64
+ - Architecture: 1D-adapted ResNet-18 with 4 layers (2 blocks each).
65
+ - Status: Under evaluation, ~11M parameters.
66
+ - Opportunity: Expand validation for broader spectral applications.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
  ## ๐Ÿ”ง Data Processing Infrastructure
69
 
70
  ### Preprocessing Pipeline
71
 
72
+ The system implements a **modular preprocessing pipeline** in `utils/preprocessing.py` with five configurable stages:
 
73
  **1. Input Validation Framework:**
74
 
75
  - File format verification (`.txt` files exclusively)
 
78
  - Monotonic sequence verification for spectral consistency
79
  - NaN value detection and automatic rejection
80
 
81
+ **2. Core Processing Steps:**
82
 
83
  - **Linear Resampling**: Uniform grid interpolation to 500 points using `scipy.interpolate.interp1d`
84
  - **Baseline Correction**: Polynomial detrending (configurable degree, default=2)
85
  - **Savitzky-Golay Smoothing**: Noise reduction (window=11, order=2, configurable)
86
+ - **Min-Max Normalization**: Scaling to range with constant-signal protection
87
 
88
  ### Batch Processing Framework
89
 
90
+ The `utils/multifile.py` module (12.5 kB) provides **enterprise-grade batch processing** capabilities:
91
 
92
  - **Multi-File Upload**: Streamlit widget supporting simultaneous file selection
93
  - **Error-Tolerant Processing**: Individual file failures don't interrupt batch operations
 
117
 
118
  ### State Management System
119
 
120
+ The application employs **advanced session state management**:
121
 
122
  - Persistent state across Streamlit reruns using `st.session_state`
123
  - Intelligent caching with content-based hash keys for expensive operations
 
128
 
129
  ### Centralized Error Handling
130
 
131
+ The `utils/errors.py` module provides with **context-aware** logging and user-friendly error messages.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
+ ### Performance Tracking System
 
 
134
 
135
+ The `utils/performance_tracker.py` module provides a robust system for logging and analyzing performance metrics.
136
 
137
+ - **Database Logging**: Persists metrics to a SQLite database.
138
+ - **Automated Tracking**: Uses a context manager to automatically track inference time, preprocessing time, and memory usage.
139
+ - **Dashboarding**: Includes functions to generate performance visualizations and summary statistics for the UI.
 
140
 
141
+ ### Enhanced Results Management
142
 
143
+ The `utils/results_manager.py` module enables comprehensive session and persistent results tracking.
144
 
145
+ - **In-Memory Storage**: Manages results for the current session.
146
+ - **Multi-Model Handling**: Aggregates results from multiple models for comparison.
147
+ - **Export Capabilities**: Exports results to CSV and JSON.
148
+ - **Statistical Analysis**: Calculates accuracy, confidence, and other metrics.
149
 
150
  ## ๐Ÿ“œ Command-Line Interface
151
 
 
166
  - Deterministic CUDA operations when GPU available
167
  - Standardized train/validation splitting methodology
168
 
 
 
 
 
 
 
 
 
 
 
 
169
  ### Data Utilities
170
 
171
  **File Discovery System:**
 
174
  - Filename-based labeling convention (`sta-*` = stable, `wea-*` = weathered)
175
  - Dataset inventory generation with statistical summaries
176
 
 
 
 
 
 
 
 
 
 
 
 
177
  ### Dependency Management
178
 
179
  The `requirements.txt` specifies **core dependencies without version pinning**:[^1_12]
 
184
  - **Visualization**: `matplotlib` for spectrum plotting
185
  - **API Framework**: `fastapi`, `uvicorn` for potential REST API expansion
186
 
187
+ ## ๐Ÿณ Deployment Infrastructure
188
+
189
+ ### Docker Configuration
190
+
191
+ The Dockerfile uses Python 3.13-slim for efficient containerization:
192
+
193
+ - Includes essential build tools and scientific libraries.
194
+ - Supports health checks for container wellness.
195
+ - **Roadmap**: Implement multi-stage builds and environment variables for streamlined deployments.
196
+
197
+ ### Confidence Analysis System
198
+
199
+ The `utils/confidence.py` module provides **scientific confidence metrics**
200
+
201
+ **Softmax-Based Confidence:**
202
+
203
+ - Normalized probability distributions from model logits
204
+ - Three-tier confidence levels: HIGH (โ‰ฅ80%), MEDIUM (โ‰ฅ60%), LOW (<60%)
205
+ - Color-coded visual indicators with emoji representations
206
+ - Legacy compatibility with logit margin calculations
207
+
208
+ ### Session Results Management
209
+
210
+ The `utils/results_manager.py` module (8.16 kB) enables **comprehensive session tracking**:
211
+
212
+ - **In-Memory Storage**: Session-wide results persistence
213
+ - **Export Capabilities**: CSV and JSON download with timestamp formatting
214
+ - **Statistical Analysis**: Automatic accuracy calculation when ground truth available
215
+ - **Data Integrity**: Results survive page refreshes within session boundaries
216
+
217
  ## ๐Ÿงช Testing Framework
218
 
219
  ### Test Infrastructure
 
224
  - **Preprocessing Tests**: Core pipeline functionality validation in `test_preprocessing.py`
225
  - **Limited Coverage**: Currently covers preprocessing functions only
226
 
227
+ **Testing Coming Soon:**
228
 
229
+ - Add model architecture unit tests
230
+ - Integration tests for UI components
231
+ - Performance benchmarking tests
232
+ - Improved error handling validation
233
 
234
  ## ๐Ÿ” Security \& Quality Assessment
235
 
 
251
  - **Error Boundaries**: Multi-level exception handling with graceful degradation
252
  - **Logging**: Structured logging with appropriate severity levels
253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254
  ## ๐Ÿš€ Extensibility Analysis
255
 
256
  ### Model Architecture Extensibility
257
 
258
+ The **registry pattern enables seamless model addition**:
259
 
260
  1. **Implementation**: Create new model class with standardized interface
261
  2. **Registration**: Add to `models/registry.py` with factory function
 
308
  - Session state pruning for long-running sessions
309
  - Caching with content-based invalidation
310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311
  ## ๐Ÿ”ฎ Strategic Development Roadmap
312
 
313
+ The project roadmap has been updated to reflect recent progress:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314
 
315
+ - [x] **FTIR Support**: Modular integration of FTIR spectroscopy is complete.
316
+ - [x] **Multi-Model Dashboard**: A model comparison tab has been implemented.
317
+ - [ ] **Image-based Inference**: Future work to include image-based polymer classification.
318
+ - [x] **Performance Tracking**: A performance tracking dashboard has been implemented.
319
+ - [ ] **Enterprise Integration**: Future work to include a RESTful API and more advanced database integration.
320
 
321
  ## ๐Ÿ’ผ Business Logic \& Scientific Workflow
322
 
 
331
 
332
  ### Scientific Applications
333
 
334
+ **Research Use Cases:**
335
 
336
  - Material science polymer degradation studies
337
  - Recycling viability assessment for circular economy
 
341
 
342
  ### Data Workflow Architecture
343
 
344
+ ```text
345
  Input Validation โ†’ Spectrum Preprocessing โ†’ Model Inference โ†’
346
  Confidence Analysis โ†’ Results Visualization โ†’ Export Options
347
  ```
 
382
 
383
  **Risk Assessment:** Low - The codebase demonstrates mature engineering practices with appropriate validation and error handling for production deployment.
384
 
385
+ **Recommendation:** This platform is ready for production deployment, representing a solid foundation for polymer classification research and industrial applications.
 
 
 
386
 
387
  ### EXTRA
388
 
 
433
  Column 1 (Input): Contains the main st.radio for mode selection and the conditional logic to display the single file uploader, batch uploader, or sample selector. It also holds the "Run Analysis" and "Reset All" buttons.
434
  Column 2 (Results): Contains all the logic for displaying either the batch results or the detailed, tabbed results for a single file (Details, Technical, Explanation).
435
  ```