text-to-sql-smolagent / text_to_sql.py
devjas1
(FEAT): Add README and implement SQL engine tool for AI agent interaction
986fb2a
from dotenv import load_dotenv
load_dotenv()
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
Float,
insert,
text, # Import text to be used in sql_engine tool
)
from sqlalchemy import inspect
from smolagents import tool, CodeAgent, InferenceClientModel
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
def insert_rows_into_table(data_rows, target_table, engine=engine):
for row in data_rows:
stmt = insert(target_table).values(**row)
with engine.begin() as connection:
connection.execute(stmt)
table_name = "receipts"
# Corrected receipts table definition
receipts = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("customer_name", String(255)), # Added customer_name column
Column("price", Float),
Column("tip", Float),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "customer_name": "Alex Payne", "price": 12.06, "tip": 1.20},
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24},
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43},
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00},
]
insert_rows_into_table(rows, receipts)
inspector = inspect(engine)
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")]
table_description = "Columns:\n" + "\n".join(
[f" - {name}: {col_type}" for name, col_type in columns_info]
)
print(table_description)
@tool
def sql_engine(query: str) -> str:
"""
Allows you to perform SQL queries on the table. Returns a string representation of
the result. The table is named 'receipts'. It's description is as follows:
Columns:
- receipt_id: INTEGER
- customer_name: STRING
- price: FLOAT
- tip: FLOAT
Args:
query: The query to perform. This should be correct SQL.
"""
output = ""
with engine.connect() as con:
rows = con.execute(text(query))
for row in rows:
output += "\n" + str(row)
return output
agent = CodeAgent(
tools=[sql_engine],
model=InferenceClientModel(model_id="meta-llama/Llama-3.1-8B-Instruct"),
)
agent.run("Can you give me the name of the client who got the most expensive receipt?")
table_name = "waiters"
waiters = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("waiter_name", String(16), primary_key=True),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "waiter_name": "Corey Johnson"},
{"receipt_id": 2, "waiter_name": "Michael Watts"},
{"receipt_id": 3, "waiter_name": "Michael Watts"},
{"receipt_id": 4, "waiter_name": "Margaret James"},
]
insert_rows_into_table(rows, waiters)
updated_description = """Allows you to perform SQL queries on the table. Beware that this tool's output is a string representation of the execution output.
It can use the following tables:"""
inspector = inspect(engine)
for table in ["receipts", "waiters"]:
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(table)]
table_description = f"Table '{table}':\n"
table_description += "Columns:\n" + "\n".join(
[f" - {name}: {col_type}" for name, col_type in columns_info]
)
updated_description += "\n\n" + table_description
print(updated_description)
sql_engine.description = updated_description
agent = CodeAgent(
tools=[sql_engine],
model=InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
agent.run("Which waiter got more total money from tips?")