Spaces:
Running
Running
| from dotenv import load_dotenv | |
| load_dotenv() | |
| from sqlalchemy import ( | |
| create_engine, | |
| MetaData, | |
| Table, | |
| Column, | |
| String, | |
| Integer, | |
| Float, | |
| insert, | |
| text, # Import text to be used in sql_engine tool | |
| ) | |
| from sqlalchemy import inspect | |
| from smolagents import tool, CodeAgent, InferenceClientModel | |
| engine = create_engine("sqlite:///:memory:") | |
| metadata_obj = MetaData() | |
| def insert_rows_into_table(data_rows, target_table, engine=engine): | |
| for row in data_rows: | |
| stmt = insert(target_table).values(**row) | |
| with engine.begin() as connection: | |
| connection.execute(stmt) | |
| table_name = "receipts" | |
| # Corrected receipts table definition | |
| receipts = Table( | |
| table_name, | |
| metadata_obj, | |
| Column("receipt_id", Integer, primary_key=True), | |
| Column("customer_name", String(255)), # Added customer_name column | |
| Column("price", Float), | |
| Column("tip", Float), | |
| ) | |
| metadata_obj.create_all(engine) | |
| rows = [ | |
| {"receipt_id": 1, "customer_name": "Alex Payne", "price": 12.06, "tip": 1.20}, | |
| {"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, | |
| {"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43}, | |
| {"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00}, | |
| ] | |
| insert_rows_into_table(rows, receipts) | |
| inspector = inspect(engine) | |
| columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")] | |
| table_description = "Columns:\n" + "\n".join( | |
| [f" - {name}: {col_type}" for name, col_type in columns_info] | |
| ) | |
| print(table_description) | |
| def sql_engine(query: str) -> str: | |
| """ | |
| Allows you to perform SQL queries on the table. Returns a string representation of | |
| the result. The table is named 'receipts'. It's description is as follows: | |
| Columns: | |
| - receipt_id: INTEGER | |
| - customer_name: STRING | |
| - price: FLOAT | |
| - tip: FLOAT | |
| Args: | |
| query: The query to perform. This should be correct SQL. | |
| """ | |
| output = "" | |
| with engine.connect() as con: | |
| rows = con.execute(text(query)) | |
| for row in rows: | |
| output += "\n" + str(row) | |
| return output | |
| agent = CodeAgent( | |
| tools=[sql_engine], | |
| model=InferenceClientModel(model_id="meta-llama/Llama-3.1-8B-Instruct"), | |
| ) | |
| agent.run("Can you give me the name of the client who got the most expensive receipt?") | |
| table_name = "waiters" | |
| waiters = Table( | |
| table_name, | |
| metadata_obj, | |
| Column("receipt_id", Integer, primary_key=True), | |
| Column("waiter_name", String(16), primary_key=True), | |
| ) | |
| metadata_obj.create_all(engine) | |
| rows = [ | |
| {"receipt_id": 1, "waiter_name": "Corey Johnson"}, | |
| {"receipt_id": 2, "waiter_name": "Michael Watts"}, | |
| {"receipt_id": 3, "waiter_name": "Michael Watts"}, | |
| {"receipt_id": 4, "waiter_name": "Margaret James"}, | |
| ] | |
| insert_rows_into_table(rows, waiters) | |
| updated_description = """Allows you to perform SQL queries on the table. Beware that this tool's output is a string representation of the execution output. | |
| It can use the following tables:""" | |
| inspector = inspect(engine) | |
| for table in ["receipts", "waiters"]: | |
| columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(table)] | |
| table_description = f"Table '{table}':\n" | |
| table_description += "Columns:\n" + "\n".join( | |
| [f" - {name}: {col_type}" for name, col_type in columns_info] | |
| ) | |
| updated_description += "\n\n" + table_description | |
| print(updated_description) | |
| sql_engine.description = updated_description | |
| agent = CodeAgent( | |
| tools=[sql_engine], | |
| model=InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"), | |
| ) | |
| agent.run("Which waiter got more total money from tips?") | |