Spaces:
Runtime error
Runtime error
| import torch | |
| import torchaudio | |
| from einops import rearrange | |
| from stable_audio_tools import get_pretrained_model | |
| from stable_audio_tools.inference.generation import generate_diffusion_cond | |
| from pydub import AudioSegment | |
| import re | |
| import os | |
| from datetime import datetime | |
| import gradio as gr | |
| # Define the function to generate audio based on a prompt | |
| def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half): | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Download model | |
| model, model_config = get_pretrained_model("audo/stable-audio-open-1.0") | |
| sample_rate = model_config["sample_rate"] | |
| sample_size = model_config["sample_size"] | |
| model = model.to(device) | |
| # Print model data type before conversion | |
| print("Model data type before conversion:", next(model.parameters()).dtype) | |
| # Convert model to float16 if model_half is True | |
| if model_half: | |
| model = model.to(torch.float16) | |
| # Print model data type after conversion | |
| print("Model data type after conversion:", next(model.parameters()).dtype) | |
| # Set up text and timing conditioning | |
| conditioning = [{ | |
| "prompt": prompt, | |
| "seconds_start": 0, | |
| "seconds_total": generation_time | |
| }] | |
| # Generate stereo audio | |
| output = generate_diffusion_cond( | |
| model, | |
| steps=steps, | |
| cfg_scale=cfg_scale, | |
| conditioning=conditioning, | |
| sample_size=sample_size, | |
| sigma_min=sigma_min, | |
| sigma_max=sigma_max, | |
| sampler_type=sampler_type, | |
| device=device, | |
| seed=seed | |
| ) | |
| # Print output data type | |
| print("Output data type:", output.dtype) | |
| # Rearrange audio batch to a single sequence | |
| output = rearrange(output, "b d n -> d (b n)") | |
| # Peak normalize, clip, and convert to int16 directly if model_half is used | |
| output = output.div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767) | |
| if model_half: | |
| output = output.to(torch.int16).cpu() | |
| else: | |
| output = output.to(torch.float32).to(torch.int16).cpu() | |
| torchaudio.save("temp_output.wav", output, sample_rate) | |
| # Convert to MP3 format using pydub | |
| audio = AudioSegment.from_wav("temp_output.wav") | |
| # Create Output folder and dated subfolder if they do not exist | |
| output_folder = "Output" | |
| date_folder = datetime.now().strftime("%Y-%m-%d") | |
| save_path = os.path.join(output_folder, date_folder) | |
| os.makedirs(save_path, exist_ok=True) | |
| # Generate a filename based on the prompt | |
| filename = re.sub(r'\W+', '_', prompt) + ".mp3" # Replace non-alphanumeric characters with underscores | |
| full_path = os.path.join(save_path, filename) | |
| # Ensure the filename is unique by appending a number if the file already exists | |
| base_filename = filename | |
| counter = 1 | |
| while os.path.exists(full_path): | |
| filename = f"{base_filename[:-4]}_{counter}.mp3" | |
| full_path = os.path.join(save_path, filename) | |
| counter += 1 | |
| # Export the audio to MP3 format | |
| audio.export(full_path, format="mp3") | |
| return full_path | |
| def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, model_half): | |
| try: | |
| print("Generating audio with parameters:") | |
| print("Prompt:", prompt) | |
| print("Sampler Type:", sampler_type) | |
| print("Steps:", steps) | |
| print("CFG Scale:", cfg_scale) | |
| print("Sigma Min:", sigma_min) | |
| print("Sigma Max:", sigma_max) | |
| print("Generation Time:", generation_time) | |
| print("Seed:", seed) | |
| print("Model Half Precision:", model_half) | |
| filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half) | |
| return gr.Audio(filename), f"Generated: {filename}" | |
| except Exception as e: | |
| return str(e) | |
| # Create Gradio interface | |
| prompt_textbox = gr.Textbox(lines=5, label="Prompt") | |
| sampler_dropdown = gr.Dropdown( | |
| label="Sampler Type", | |
| choices=[ | |
| "dpmpp-3m-sde", | |
| "dpmpp-2m-sde", | |
| "k-heun", | |
| "k-lms", | |
| "k-dpmpp-2s-ancestral", | |
| "k-dpm-2", | |
| "k-dpm-fast" | |
| ], | |
| value="dpmpp-3m-sde" | |
| ) | |
| steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100) | |
| cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7) | |
| sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3) | |
| sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500) | |
| generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47) | |
| seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456) | |
| model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False) | |
| output_textbox = gr.Textbox(label="Output") | |
| title = "ππ StableAudioWebUI ππ" | |
| description = "[Github Repository](https://github.com/Saganaki22/StableAudioWebUI)" | |
| gr.Interface( | |
| audio_generator, | |
| [prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox], | |
| [gr.Audio(), output_textbox], | |
| title=title, | |
| description=description | |
| ).launch() | |