Spaces:
Runtime error
Runtime error
DRBAPH
commited on
Upload gradio_app.py
Browse files- gradio_app.py +32 -16
gradio_app.py
CHANGED
|
@@ -10,7 +10,7 @@ from datetime import datetime
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# Define the function to generate audio based on a prompt
|
| 13 |
-
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type):
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
# Download model
|
|
@@ -19,6 +19,16 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
|
| 19 |
sample_size = model_config["sample_size"]
|
| 20 |
|
| 21 |
model = model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Set up text and timing conditioning
|
| 24 |
conditioning = [{
|
|
@@ -41,11 +51,19 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
|
| 41 |
seed=seed
|
| 42 |
)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
| 44 |
# Rearrange audio batch to a single sequence
|
| 45 |
output = rearrange(output, "b d n -> d (b n)")
|
| 46 |
|
| 47 |
-
# Peak normalize, clip, convert to int16
|
| 48 |
-
output = output.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
torchaudio.save("temp_output.wav", output, sample_rate)
|
| 50 |
|
| 51 |
# Convert to MP3 format using pydub
|
|
@@ -74,7 +92,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
|
| 74 |
|
| 75 |
return full_path
|
| 76 |
|
| 77 |
-
def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed):
|
| 78 |
try:
|
| 79 |
print("Generating audio with parameters:")
|
| 80 |
print("Prompt:", prompt)
|
|
@@ -85,8 +103,9 @@ def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max
|
|
| 85 |
print("Sigma Max:", sigma_max)
|
| 86 |
print("Generation Time:", generation_time)
|
| 87 |
print("Seed:", seed)
|
|
|
|
| 88 |
|
| 89 |
-
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type)
|
| 90 |
return gr.Audio(filename), f"Generated: {filename}"
|
| 91 |
except Exception as e:
|
| 92 |
return str(e)
|
|
@@ -106,16 +125,13 @@ sampler_dropdown = gr.Dropdown(
|
|
| 106 |
],
|
| 107 |
value="dpmpp-3m-sde"
|
| 108 |
)
|
| 109 |
-
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1)
|
| 110 |
-
|
| 111 |
-
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1)
|
| 112 |
-
cfg_scale_slider.value = 7 # Set the default value here
|
| 113 |
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
|
| 114 |
-
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=1, value=500)
|
| 115 |
-
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1)
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
seed_slider.value = 77212 # Set the default value here
|
| 119 |
|
| 120 |
output_textbox = gr.Textbox(label="Output")
|
| 121 |
|
|
@@ -124,8 +140,8 @@ description = "[Github Repository](https://github.com/Saganaki22/StableAudioWebU
|
|
| 124 |
|
| 125 |
gr.Interface(
|
| 126 |
audio_generator,
|
| 127 |
-
[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider],
|
| 128 |
[gr.Audio(), output_textbox],
|
| 129 |
title=title,
|
| 130 |
description=description
|
| 131 |
-
).launch()
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# Define the function to generate audio based on a prompt
|
| 13 |
+
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half):
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
# Download model
|
|
|
|
| 19 |
sample_size = model_config["sample_size"]
|
| 20 |
|
| 21 |
model = model.to(device)
|
| 22 |
+
|
| 23 |
+
# Print model data type before conversion
|
| 24 |
+
print("Model data type before conversion:", next(model.parameters()).dtype)
|
| 25 |
+
|
| 26 |
+
# Convert model to float16 if model_half is True
|
| 27 |
+
if model_half:
|
| 28 |
+
model = model.to(torch.float16)
|
| 29 |
+
|
| 30 |
+
# Print model data type after conversion
|
| 31 |
+
print("Model data type after conversion:", next(model.parameters()).dtype)
|
| 32 |
|
| 33 |
# Set up text and timing conditioning
|
| 34 |
conditioning = [{
|
|
|
|
| 51 |
seed=seed
|
| 52 |
)
|
| 53 |
|
| 54 |
+
# Print output data type
|
| 55 |
+
print("Output data type:", output.dtype)
|
| 56 |
+
|
| 57 |
# Rearrange audio batch to a single sequence
|
| 58 |
output = rearrange(output, "b d n -> d (b n)")
|
| 59 |
|
| 60 |
+
# Peak normalize, clip, and convert to int16 directly if model_half is used
|
| 61 |
+
output = output.div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767)
|
| 62 |
+
if model_half:
|
| 63 |
+
output = output.to(torch.int16).cpu()
|
| 64 |
+
else:
|
| 65 |
+
output = output.to(torch.float32).to(torch.int16).cpu()
|
| 66 |
+
|
| 67 |
torchaudio.save("temp_output.wav", output, sample_rate)
|
| 68 |
|
| 69 |
# Convert to MP3 format using pydub
|
|
|
|
| 92 |
|
| 93 |
return full_path
|
| 94 |
|
| 95 |
+
def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, model_half):
|
| 96 |
try:
|
| 97 |
print("Generating audio with parameters:")
|
| 98 |
print("Prompt:", prompt)
|
|
|
|
| 103 |
print("Sigma Max:", sigma_max)
|
| 104 |
print("Generation Time:", generation_time)
|
| 105 |
print("Seed:", seed)
|
| 106 |
+
print("Model Half Precision:", model_half)
|
| 107 |
|
| 108 |
+
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half)
|
| 109 |
return gr.Audio(filename), f"Generated: {filename}"
|
| 110 |
except Exception as e:
|
| 111 |
return str(e)
|
|
|
|
| 125 |
],
|
| 126 |
value="dpmpp-3m-sde"
|
| 127 |
)
|
| 128 |
+
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100)
|
| 129 |
+
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7)
|
|
|
|
|
|
|
| 130 |
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
|
| 131 |
+
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500)
|
| 132 |
+
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47)
|
| 133 |
+
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456)
|
| 134 |
+
model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False)
|
|
|
|
| 135 |
|
| 136 |
output_textbox = gr.Textbox(label="Output")
|
| 137 |
|
|
|
|
| 140 |
|
| 141 |
gr.Interface(
|
| 142 |
audio_generator,
|
| 143 |
+
[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox],
|
| 144 |
[gr.Audio(), output_textbox],
|
| 145 |
title=title,
|
| 146 |
description=description
|
| 147 |
+
).launch()
|