Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,19 @@
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
model_name = "Qwen/Qwen2.5-Math-
|
|
|
|
|
|
|
| 6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
|
| 8 |
# Modell und Tokenizer laden
|
| 9 |
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
model_name,
|
| 11 |
device_map="auto", # Modell auf verfügbare Geräte verteilen
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
).to(device).eval()
|
| 14 |
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
@@ -28,8 +32,7 @@ input_ids = tokenizer.encode(conversation_str, return_tensors="pt", add_special_
|
|
| 28 |
|
| 29 |
# Inferenz durchführen
|
| 30 |
with torch.no_grad():
|
| 31 |
-
outputs = model.generate(input_ids=input_ids, max_length=
|
| 32 |
|
| 33 |
-
# Ausgabe
|
| 34 |
-
|
| 35 |
-
print(response)
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
|
| 4 |
+
# Modellname für die kleinere Variante
|
| 5 |
+
model_name = "Qwen/Qwen2.5-Math-1.5B-Instruct"
|
| 6 |
+
|
| 7 |
+
# Überprüfen, ob eine GPU verfügbar ist
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
|
| 10 |
# Modell und Tokenizer laden
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
model_name,
|
| 13 |
device_map="auto", # Modell auf verfügbare Geräte verteilen
|
| 14 |
+
low_cpu_mem_usage=True, # Versucht, den Speicherverbrauch zu reduzieren
|
| 15 |
+
trust_remote_code=True,
|
| 16 |
+
torch_dtype=torch.float16 # Reduziert den Speicherverbrauch
|
| 17 |
).to(device).eval()
|
| 18 |
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
| 32 |
|
| 33 |
# Inferenz durchführen
|
| 34 |
with torch.no_grad():
|
| 35 |
+
outputs = model.generate(input_ids=input_ids, max_length=256, num_return_sequences=1)
|
| 36 |
|
| 37 |
+
# Ausgabe anzeigen
|
| 38 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
|