File size: 24,319 Bytes
ac23084
 
1797675
ac23084
 
 
 
a6e974e
ac23084
a6e974e
ac23084
 
 
1797675
ac23084
 
bd507dd
 
33de423
ac23084
1797675
cb3f487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac23084
1797675
ac23084
 
 
 
 
 
 
 
 
 
 
 
eb62b92
ac23084
 
 
 
 
1797675
ac23084
 
 
 
 
 
 
1797675
ac23084
bd507dd
 
 
 
 
 
ac23084
1797675
ac23084
 
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac23084
 
1797675
ac23084
1797675
bd507dd
31d7902
 
 
33de423
1797675
 
 
 
 
33de423
 
 
 
1797675
 
 
 
bd507dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d7902
bd507dd
 
 
 
 
31d7902
 
bd507dd
 
 
 
 
31d7902
 
 
bd507dd
31d7902
 
 
 
 
 
33de423
31d7902
 
 
 
 
 
 
 
 
33de423
31d7902
 
 
 
 
 
 
 
 
33de423
31d7902
 
 
 
 
 
 
 
 
 
 
33de423
31d7902
 
 
 
bd507dd
ac23084
33de423
 
 
 
 
 
 
 
 
 
 
 
 
 
ac23084
 
 
1797675
ac23084
33de423
bd507dd
 
 
 
 
 
 
1797675
bd507dd
 
 
 
 
 
 
 
1797675
bd507dd
 
 
 
 
 
 
 
 
 
 
 
1797675
 
 
bd507dd
8ce4529
bd507dd
c825b23
33de423
c825b23
 
 
33de423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c825b23
33de423
 
 
 
c825b23
33de423
c825b23
 
 
 
 
 
 
 
 
 
 
 
33de423
 
 
 
 
 
c825b23
1797675
 
 
33de423
 
1797675
 
bd507dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd507dd
1797675
 
 
bd507dd
1797675
 
bd507dd
1797675
 
 
 
 
 
 
 
 
 
 
 
 
bd507dd
 
 
 
 
 
 
 
 
1797675
bd507dd
 
 
 
 
 
1797675
bd507dd
 
 
1797675
 
 
bd507dd
 
 
 
 
 
 
1797675
 
bd507dd
 
 
1797675
 
 
 
 
 
 
 
bd507dd
1797675
bd507dd
 
 
 
 
 
 
33de423
 
 
 
 
 
1797675
eec60ab
1797675
 
bd507dd
 
 
 
 
 
 
 
7c58b95
 
 
 
1797675
bd507dd
1797675
7c58b95
 
 
 
1797675
33de423
 
 
 
 
7c58b95
1797675
 
 
 
 
 
 
bd507dd
33de423
bd507dd
 
7c58b95
bd507dd
 
 
1797675
bd507dd
33de423
bd507dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33de423
bd507dd
 
 
 
 
 
 
 
 
 
 
 
1797675
bd507dd
 
 
 
 
 
 
 
 
 
31d7902
33de423
bd507dd
 
 
 
ac23084
1797675
bd507dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# video_service.py

# --- 1. IMPORTAÇÕES ---
import torch
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib

# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
    try:
        import psutil
        import pynvml as nvml
        nvml.nvmlInit()
        handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
        try:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
        except Exception:
            procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
        results = []
        for p in procs:
            pid = int(p.pid)
            used_mb = None
            try:
                if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
                    used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
            except Exception:
                used_mb = None
            name = "unknown"
            user = "unknown"
            try:
                pr = psutil.Process(pid)
                name = pr.name()
                user = pr.username()
            except Exception:
                pass
            results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
        nvml.nvmlShutdown()
        return results
    except Exception:
        return []

def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
    cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
    try:
        out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
    except Exception:
        return []
    results = []
    for line in out.strip().splitlines():
        parts = [p.strip() for p in line.split(",")]
        if len(parts) >= 3:
            try:
                pid = int(parts[0])
                name = parts[1]
                used_mb = int(parts[2])
                user = "unknown"
                try:
                    import psutil
                    pr = psutil.Process(pid)
                    user = pr.username()
                except Exception:
                    pass
                results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
            except Exception:
                continue
    return results

def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
    if not processes:
        return "  - Processos ativos: (nenhum)\n"
    processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
    lines = ["  - Processos ativos (PID | USER | NAME | VRAM MB):"]
    for p in processes:
        star = "*" if p["pid"] == current_pid else " "
        used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
        lines.append(f"    {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
    return "\n".join(lines) + "\n"

def run_setup():
    """Executa o script setup.py para clonar as dependências necessárias."""
    setup_script_path = "setup.py"
    if not os.path.exists(setup_script_path):
        print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.")
        return
    try:
        print("--- Executando setup.py para garantir que as dependências estão presentes ---")
        subprocess.run([sys.executable, setup_script_path], check=True)
        print("--- Setup concluído com sucesso ---")
    except subprocess.CalledProcessError as e:
        print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.")
        sys.exit(1)

DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
    run_setup()

def add_deps_to_path():
    """Adiciona o repositório clonado ao sys.path para que suas bibliotecas possam ser importadas."""
    if not LTX_VIDEO_REPO_DIR.exists():
        raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.")
    if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))

add_deps_to_path()

# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
from inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
    calculate_padding,
    load_media_file,
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

# --- 4. FUNÇÕES HELPER DE LOG ---
def log_tensor_info(tensor, name="Tensor"):
    if not isinstance(tensor, torch.Tensor):
        print(f"\n[INFO] O item '{name}' não é um tensor para logar.")
        return
    print(f"\n--- Informações do Tensor: {name} ---")
    print(f"  - Shape: {tensor.shape}")
    print(f"  - Dtype: {tensor.dtype}")
    print(f"  - Device: {tensor.device}")
    if tensor.numel() > 0:
        print(f"  - Min valor: {tensor.min().item():.4f}")
        print(f"  - Max valor: {tensor.max().item():.4f}")
        print(f"  - Média: {tensor.mean().item():.4f}")
    else:
        print("  - O tensor está vazio, sem estatísticas.")
    print("------------------------------------------\n")

# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
class VideoService:
    def __init__(self):
        print("Inicializando VideoService...")
        self.config = self._load_config()
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.last_memory_reserved_mb = 0.0
        self._tmp_dirs = set()
        self._tmp_files = set()
        self._last_outputs = []

        self.pipeline, self.latent_upsampler = self._load_models()
        print(f"Movendo modelos para o dispositivo de inferência: {self.device}")
        self.pipeline.to(self.device)
        if self.latent_upsampler:
            self.latent_upsampler.to(self.device)

        # Política de precisão (inclui promoção FP8->BF16 e dtype de autocast)
        self._apply_precision_policy()

        if self.device == "cuda":
            torch.cuda.empty_cache()
            self._log_gpu_memory("Após carregar modelos")
        print("VideoService pronto para uso.")

    # Método de log de GPU como parte da classe
    def _log_gpu_memory(self, stage_name: str):
        if self.device != "cuda":
            return
        device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
        current_reserved_b = torch.cuda.memory_reserved(device_index)
        current_reserved_mb = current_reserved_b / (1024 ** 2)
        total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
        total_memory_mb = total_memory_b / (1024 ** 2)
        peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
        delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
        processes = _query_gpu_processes_via_nvml(device_index)
        if not processes:
            processes = _query_gpu_processes_via_nvidiasmi(device_index)
        print(f"\n--- [LOG DE MEMÓRIA GPU] - {stage_name} (cuda:{device_index}) ---")
        print(f"  - Uso Atual (Reservado): {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB")
        print(f"  - Variação desde o último log: {delta_mb:+.2f} MB")
        if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
            print(f"  - Pico de Uso (nesta operação): {peak_reserved_mb:.2f} MB")
        print(_gpu_process_table(processes, os.getpid()), end="")
        print("--------------------------------------------------\n")
        self.last_memory_reserved_mb = current_reserved_mb

    def _register_tmp_dir(self, d: str):
        try:
            if d and os.path.isdir(d):
                self._tmp_dirs.add(d)
        except Exception:
            pass

    def _register_tmp_file(self, f: str):
        try:
            if f and os.path.isfile(f):
                self._tmp_files.add(f)
        except Exception:
            pass

    def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
        """
        Remove temporários e coleta memória.
        keep_paths: caminhos que não devem ser removidos (ex.: vídeo final).
        extra_paths: caminhos adicionais para tentar remover (opcional).
        """
        keep = set(keep_paths or [])
        extras = set(extra_paths or [])

        # Remoção de arquivos
        for f in list(self._tmp_files | extras):
            try:
                if f not in keep and os.path.isfile(f):
                    os.remove(f)
            except Exception:
                pass
            finally:
                self._tmp_files.discard(f)

        # Remoção de diretórios
        for d in list(self._tmp_dirs):
            try:
                if d not in keep and os.path.isdir(d):
                    shutil.rmtree(d, ignore_errors=True)
            except Exception:
                pass
            finally:
                self._tmp_dirs.discard(d)

        # Coleta de GC e limpeza de VRAM
        gc.collect()
        try:
            if clear_gpu and torch.cuda.is_available():
                torch.cuda.empty_cache()
                try:
                    torch.cuda.ipc_collect()
                except Exception:
                    pass
        except Exception:
            pass

        # Log opcional pós-limpeza
        try:
            self._log_gpu_memory("Após finalize")
        except Exception:
            pass

    def _load_config(self):
        # Prioriza configs FP8 se presentes, mantendo compatibilidade
        base = LTX_VIDEO_REPO_DIR / "configs"
        candidates = [
            base / "ltxv-13b-0.9.8-dev-fp8.yaml",
            base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
            base / "ltxv-13b-0.9.8-dev-fp8.yaml.txt",
            base / "ltxv-13b-0.9.8-distilled.yaml",  # fallback não-FP8
        ]
        for cfg in candidates:
            if cfg.exists():
                with open(cfg, "r") as file:
                    return yaml.safe_load(file)
        # Fallback rígido para caminho clássico se nada acima existir
        config_file_path = base / "ltxv-13b-0.9.8-distilled.yaml"
        with open(config_file_path, "r") as file:
            return yaml.safe_load(file)

    def _load_models(self):
        LTX_REPO = "Lightricks/LTX-Video"

        distilled_model_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["checkpoint_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN"),
        )
        self.config["checkpoint_path"] = distilled_model_path

        spatial_upscaler_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["spatial_upscaler_model_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN"),
        )
        self.config["spatial_upscaler_model_path"] = spatial_upscaler_path

        pipeline = create_ltx_video_pipeline(
            ckpt_path=self.config["checkpoint_path"],
            precision=self.config["precision"],
            text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
            sampler=self.config["sampler"],
            device="cpu",
            enhance_prompt=False,
            prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
            prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
        )

        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")

        return pipeline, latent_upsampler

    # Precisão: promove FP8->BF16 e define dtype de autocast (versão segura)
    def _promote_fp8_weights_to_bf16(self, module):
        # Só promova se for realmente um nn.Module; Pipelines não são nn.Module
        if not isinstance(module, torch.nn.Module):
            return
        f8 = getattr(torch, "float8_e4m3fn", None)
        if f8 is None:
            return
        for _, p in module.named_parameters(recurse=True):
            try:
                if p.dtype == f8:
                    with torch.no_grad():
                        p.data = p.data.to(torch.bfloat16)
            except Exception:
                pass
        for _, b in module.named_buffers(recurse=True):
            try:
                if hasattr(b, "dtype") and b.dtype == f8:
                    b.data = b.data.to(torch.bfloat16)
            except Exception:
                pass
    
    def _apply_precision_policy(self):
        prec = str(self.config.get("precision", "")).lower()
        self.runtime_autocast_dtype = torch.float32
        if prec == "float8_e4m3fn":
            # FP8: kernels nativos da LTX podem estar ativos; por padrão, não promover pesos
            self.runtime_autocast_dtype = torch.bfloat16
            force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
            if force_promote and hasattr(torch, "float8_e4m3fn"):
                # Promove apenas módulos reais; ignora objetos Pipeline
                try:
                    self._promote_fp8_weights_to_bf16(self.pipeline)
                except Exception:
                    pass
                try:
                    if self.latent_upsampler:
                        self._promote_fp8_weights_to_bf16(self.latent_upsampler)
                except Exception:
                    pass
        elif prec == "bfloat16":
            self.runtime_autocast_dtype = torch.bfloat16
        elif prec == "mixed_precision":
            self.runtime_autocast_dtype = torch.float16
        else:
            self.runtime_autocast_dtype = torch.float32
    
    def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
        tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
        tensor = torch.nn.functional.pad(tensor, padding_values)
        if self.device == "cuda":
            return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
        return tensor.to(self.device)

    def generate(
        self,
        prompt,
        negative_prompt,
        mode="text-to-video",
        start_image_filepath=None,
        middle_image_filepath=None,
        middle_frame_number=None,
        middle_image_weight=1.0,
        end_image_filepath=None,
        end_image_weight=1.0,
        input_video_filepath=None,
        height=512,
        width=704,
        duration=2.0,
        frames_to_use=9,
        seed=42,
        randomize_seed=True,
        guidance_scale=3.0,
        improve_texture=True,
        progress_callback=None,
    ):
        if self.device == "cuda":
            torch.cuda.empty_cache()
            torch.cuda.reset_peak_memory_stats()
        self._log_gpu_memory("Início da Geração")

        if mode == "image-to-video" and not start_image_filepath:
            raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
        if mode == "video-to-video" and not input_video_filepath:
            raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")

        used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
        seed_everething(used_seed)

        FPS = 24.0
        MAX_NUM_FRAMES = 257
        target_frames_rounded = round(duration * FPS)
        n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
        actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))

        height_padded = ((height - 1) // 32 + 1) * 32
        width_padded = ((width - 1) // 32 + 1) * 32
        padding_values = calculate_padding(height, width, height_padded, width_padded)

        generator = torch.Generator(device=self.device).manual_seed(used_seed)
        conditioning_items = []

        if mode == "image-to-video":
            start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
            conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
            if middle_image_filepath and middle_frame_number is not None:
                middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
                safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
                conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
            if end_image_filepath:
                end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
                last_frame_index = actual_num_frames - 1
                conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))

        call_kwargs = {
            "prompt": prompt,
            "negative_prompt": negative_prompt,
            "height": height_padded,
            "width": width_padded,
            "num_frames": actual_num_frames,
            "frame_rate": int(FPS),
            "generator": generator,
            "output_type": "pt",
            "conditioning_items": conditioning_items if conditioning_items else None,
            "media_items": None,
            "decode_timestep": self.config["decode_timestep"],
            "decode_noise_scale": self.config["decode_noise_scale"],
            "stochastic_sampling": self.config["stochastic_sampling"],
            "image_cond_noise_scale": 0.15,
            "is_video": True,
            "vae_per_channel_normalize": True,
            "mixed_precision": (self.config["precision"] == "mixed_precision"),
            "offload_to_cpu": False,
            "enhance_prompt": False,
            "skip_layer_strategy": SkipLayerStrategy.AttentionValues,
        }

        if mode == "video-to-video":
            call_kwargs["media_items"] = load_media_file(
                media_path=input_video_filepath,
                height=height,
                width=width,
                max_frames=int(frames_to_use),
                padding=padding_values,
            ).to(self.device)

        result_tensor = None
        video_np = None
        multi_scale_pipeline = None

        if improve_texture:
            if not self.latent_upsampler:
                raise ValueError("Upscaler espacial não carregado.")
            multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
            first_pass_args = self.config.get("first_pass", {}).copy()
            first_pass_args["guidance_scale"] = float(guidance_scale)
            second_pass_args = self.config.get("second_pass", {}).copy()
            second_pass_args["guidance_scale"] = float(guidance_scale)

            multi_scale_call_kwargs = call_kwargs.copy()
            multi_scale_call_kwargs.update(
                {
                    "downscale_factor": self.config["downscale_factor"],
                    "first_pass": first_pass_args,
                    "second_pass": second_pass_args,
                }
            )

            ctx = contextlib.nullcontext()
            if self.device == "cuda":
                ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype)
            with ctx:
                result_tensor = multi_scale_pipeline(**multi_scale_call_kwargs).images
            log_tensor_info(result_tensor, "Resultado da Etapa 2 (Saída do Pipeline Multi-Scale)")
        else:
            single_pass_kwargs = call_kwargs.copy()
            first_pass_config = self.config.get("first_pass", {})
            single_pass_kwargs.update(
                {
                    "guidance_scale": float(guidance_scale),
                    "stg_scale": first_pass_config.get("stg_scale"),
                    "rescaling_scale": first_pass_config.get("rescaling_scale"),
                    "skip_block_list": first_pass_config.get("skip_block_list"),
                }
            )
        
            # EVITAR guidance_timesteps no single-pass para não acionar guidance_mapping na lib
            # Preferir 'timesteps' se existir; caso contrário, deixar sem e usar defaults do pipeline.
            config_timesteps = first_pass_config.get("timesteps")
            if mode == "video-to-video":
                single_pass_kwargs["timesteps"] = [0.7]
                print("[INFO] Modo video-to-video (etapa única): definindo timesteps (força) para [0.7]")
            elif isinstance(config_timesteps, (list, tuple)) and len(config_timesteps) > 0:
                single_pass_kwargs["timesteps"] = config_timesteps
            # IMPORTANTE: não usar first_pass_config.get("guidance_timesteps") aqui
        
            print("\n[INFO] Executando pipeline de etapa única...")
            ctx = contextlib.nullcontext()
            if self.device == "cuda":
                ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype)
            with ctx:
                result_tensor = self.pipeline(**single_pass_kwargs).images
        
        pad_left, pad_right, pad_top, pad_bottom = padding_values
        slice_h_end = -pad_bottom if pad_bottom > 0 else None
        slice_w_end = -pad_right if pad_right > 0 else None
        result_tensor = result_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
        log_tensor_info(result_tensor, "Tensor Final (Após Pós-processamento, Antes de Salvar)")

        video_np = (result_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)

        # Staging seguro em tmp e move para diretório persistente
        temp_dir = tempfile.mkdtemp(prefix="ltxv_")
        self._register_tmp_dir(temp_dir)
        results_dir = "/app/output"
        os.makedirs(results_dir, exist_ok=True)

        final_output_path = None
        output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
        try:
            with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], codec="libx264", quality=8) as writer:
                total_frames = len(video_np)
                for i, frame in enumerate(video_np):
                    writer.append_data(frame)
                    if progress_callback:
                        progress_callback(i + 1, total_frames)

            candidate_final = os.path.join(results_dir, f"output_{used_seed}.mp4")
            try:
                shutil.move(output_video_path, candidate_final)
                final_output_path = candidate_final
            except Exception:
                final_output_path = output_video_path
            self._register_tmp_file(output_video_path)

            self._log_gpu_memory("Fim da Geração")
            return final_output_path, used_seed
        finally:
            # Libera tensores/objetos grandes antes de limpar VRAM
            try:
                del result_tensor
            except Exception:
                pass
            try:
                del video_np
            except Exception:
                pass
            try:
                del multi_scale_pipeline
            except Exception:
                pass

            gc.collect()
            try:
                if self.device == "cuda":
                    torch.cuda.empty_cache()
                    try:
                        torch.cuda.ipc_collect()
                    except Exception:
                        pass
            except Exception:
                pass

            # Limpeza de temporários preservando o vídeo final
            try:
                self.finalize(keep_paths=[final_output_path] if final_output_path else [])
            except Exception:
                pass

print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()