File size: 13,910 Bytes
8c98072
655068e
 
 
c9413de
655068e
 
 
 
 
 
c9413de
655068e
 
4f4406c
655068e
 
 
9a6b3d7
a7e6912
 
 
 
 
 
 
4f4406c
655068e
 
 
 
 
2a6997e
655068e
2193363
 
 
2a6997e
 
 
 
 
 
1a0f5ad
 
 
655068e
 
 
 
 
 
 
 
 
a7e6912
 
 
d3e0bc3
 
7809765
140e6ff
9a6b3d7
655068e
9a6b3d7
140e6ff
a7e6912
655068e
 
 
 
c9413de
655068e
 
 
 
9a6b3d7
a7e6912
655068e
c9413de
a7e6912
655068e
 
a7e6912
655068e
 
 
c9413de
655068e
 
 
 
 
 
 
 
 
 
c9413de
655068e
 
 
c9413de
655068e
 
c9413de
 
655068e
 
 
 
 
 
 
c9413de
655068e
 
c9413de
655068e
 
c9413de
655068e
 
edd6b83
655068e
 
 
 
a7e6912
655068e
 
 
 
 
7809765
 
 
 
 
 
 
 
655068e
7809765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c4c10
 
 
7809765
 
 
 
43aedae
 
 
7809765
 
 
 
 
 
 
37709cf
7809765
 
 
 
 
 
 
b5c3584
 
655068e
 
 
 
 
 
37709cf
7809765
 
 
 
37709cf
7809765
 
 
655068e
 
 
 
 
e6999b3
655068e
 
 
7809765
 
37709cf
7809765
37709cf
655068e
 
 
 
 
4f4406c
655068e
 
 
 
e6999b3
34ff926
 
 
655068e
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e6912
655068e
 
 
 
 
 
a9f0d87
 
 
 
 
 
 
e6999b3
 
655068e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e6912
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# FILE: api/ltx/ltx_aduc_pipeline.py
# DESCRIPTION: Final high-level orchestrator for LTX-Video generation.
# This version acts as a client to the specialized managers (LTX, VAE),
# focusing solely on the business logic of video generation workflows.

import gc
import json
import os
import shutil
import sys
import tempfile
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import random
import torch
import yaml
import numpy as np
from PIL import Image
from api.ltx.ltx_utils import seed_everything
from utils.debug_utils import log_function_io
from managers.gpu_manager import gpu_manager
from api.ltx.ltx_aduc_manager import ltx_aduc_manager, LatentConditioningItem
from api.ltx.vae_aduc_pipeline import vae_aduc_pipeline
from tools.video_encode_tool import video_encode_tool_singleton


# ==============================================================================
# --- SETUP E IMPORTAÇÕES DO PROJETO ---
# ==============================================================================

# Configuração de logging e supressão de warnings
import logging
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as ll
ll.set_verbosity_error()
ll.set_verbosity_warning()
ll.set_verbosity_info()
ll.set_verbosity_debug()

logger = logging.getLogger("AducDebug")
logging.basicConfig(level=logging.DEBUG)
logger.setLevel(logging.DEBUG)

# --- Constantes de Configuração ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8

# Garante que a biblioteca LTX-Video seja importável
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
    sys.path.insert(0, repo_path)

from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
    

# ==============================================================================
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
# ==============================================================================

class LtxAducPipeline:
    """
    Orchestrates the high-level logic of video generation, delegating all
    low-level tasks to specialized managers and utility modules.
    """

    @log_function_io
    def __init__(self):
        t0 = time.time()
        logging.info("Initializing VideoService Orchestrator...")
        
        if ltx_aduc_manager is None or vae_aduc_pipeline is None:
            raise RuntimeError("A required manager (LTX or VAE) failed to initialize. Aborting.")

        self.pipeline = ltx_aduc_manager.get_pipeline()
        self.main_device = self.pipeline.device
        self.vae_device = self.pipeline.vae.device
        self.config = ltx_aduc_manager.config
        
        self._apply_precision_policy()
        logging.info(f"VideoService ready. Using Main: {self.main_device}, VAE: {self.vae_device}. Startup time: {time.time() - t0:.2f}s")

    def finalize(self):
        """Cleans up GPU memory after a generation task."""
        gc.collect()
        if torch.cuda.is_available():
            with torch.cuda.device(self.main_device):
                torch.cuda.empty_cache()
            with torch.cuda.device(self.vae_device):
                torch.cuda.empty_cache()
            try: torch.cuda.ipc_collect()
            except Exception: pass

    # ==========================================================================
    # --- LÓGICA DE NEGÓCIO: ORQUESTRADOR PÚBLICO UNIFICADO ---
    # ==========================================================================

    @log_function_io
    def generate_low_resolution(
        self,
        prompt_list: List[str],
        initial_media_items: Optional[List[Tuple[Union[str, Image.Image, torch.Tensor], int, float]]] = None,
        **kwargs
    ) -> Tuple[Optional[str], Optional[str], Optional[int]]:
        """
        [UNIFIED ORCHESTRATOR] Generates a video from a list of prompts and raw media items.
        """
        logging.info("Starting unified low-resolution generation...")
        used_seed = self._get_random_seed()
        seed_everything(used_seed)
        logging.info(f"Using randomly generated seed: {used_seed}")

        if not prompt_list: raise ValueError("Prompt list cannot be empty.")
        is_narrative = len(prompt_list) > 1
        num_chunks = len(prompt_list)
        total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
        frames_per_chunk = max(FRAMES_ALIGNMENT, (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT)
        overlap_frames = 8 if is_narrative else 0
        
        initial_conditions = []
        if initial_media_items:
            logging.info("Delegating to VaeServer to prepare initial conditioning items...")
            initial_conditions = vae_aduc_pipeline.generate_conditioning_items(
                media_items=[item[0] for item in initial_media_items],
                target_frames=[item[1] for item in initial_media_items],
                strengths=[item[2] for item in initial_media_items],
                target_resolution=(kwargs['height'], kwargs['width'])
            )

        height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
        downscale_factor = self.config.get("downscale_factor", 0.6666666)
        vae_scale_factor = self.pipeline.vae_scale_factor
        downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
        downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)

        call_kwargs =  self.config.get("first_pass", {}).copy()
        
        stg_mode_str = self.config.get("stg_mode", "attention_values")
        if stg_mode_str.lower() in ["stg_av", "attention_values"]:
            call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
        elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
            call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
        elif stg_mode_str.lower() in ["stg_r", "residual"]:
            call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
        elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
            call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
        
        call_kwargs = {
            "skip_initial_inference_steps": 0,
            "skip_final_inference_steps": 0,
            "num_inference_steps": 20,
            "negative_prompt": kwargs['negative_prompt'],
            "height": downscaled_height,
            "width": downscaled_width,
            "guidance_scale": 4,
            "stg_scale": self.config.get("stg_scale", 4),
            "rescaling_scale": self.config.get("rescaling_scale", None),
            "skip_block_list": self.config.get("skip_block_list", None),
            "frame_rate": int(DEFAULT_FPS),
            "generator": torch.Generator(device=self.main_device).manual_seed(self._get_random_seed()),
            "output_type": "latent",
            "media_items": None,
            "decode_timestep": self.config.get("decode_timestep", None),
            "decode_noise_scale": self.config.get("decode_noise_scale", None),
            "stochastic_sampling": self.config.get("stochastic_sampling", None),
            "image_cond_noise_scale": 0.15,
            "is_video": True,
            "vae_per_channel_normalize": True,
            "mixed_precision": (self.config["precision"] == "mixed_precision"),
            "offload_to_cpu": False,
            "enhance_prompt": False,
        }

        ltx_configs_override = self.config.get("ltx_configs_override", {}).copy()
        call_kwargs.update(ltx_configs_override)  

        if initial_conditions is not None:
            call_kwargs["conditioning_items"] = initial_conditions
        
        temp_latent_paths = []
        #try:
        if True:
            for i, chunk_prompt in enumerate(prompt_list):
                logging.info(f"Processing scene {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
                
                current_frames_base = frames_per_chunk if i < num_chunks - 1 else total_frames - ((num_chunks - 1) * frames_per_chunk)
                current_frames = current_frames_base + (overlap_frames if i > 0 else 0)
                current_frames = self._align(current_frames, alignment_rule='n*8+1')
               
                call_kwargs.pop("prompt", None) 
                call_kwargs.pop("num_frames", None)
                call_kwargs["prompt"] = chunk_prompt
                call_kwargs["num_frames"] = current_frames
                
                with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
                    chunk_latents = self.pipeline(**call_kwargs).images
        
                if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for scene {i+1}.")

                if is_narrative and i < num_chunks - 1:
                    overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
                    overlap_condition_item = LatentConditioningItem(
                        latent_tensor=overlap_latents,
                        media_frame_number=0,
                        conditioning_strength=1.0
                    )
                    call_kwargs.pop("conditioning_items", None) 
                    call_kwargs["conditioning_items"] = overlap_condition_item
                else:
                    call_kwargsl.pop("conditioning_items", None) 
                    
                if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
                
                chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
                torch.save(chunk_latents.cpu(), chunk_path)
                temp_latent_paths.append(chunk_path)
            
            base_filename = "narrative_video" if is_narrative else "single_video"
            all_tensors_cpu = [torch.load(p) for p in temp_latent_paths]
            final_latents = torch.cat(all_tensors_cpu, dim=2)

        
            video_path, latents_path = self._finalize_generation(final_latents, base_filename, used_seed)
            return video_path, latents_path, used_seed
            

    # ==========================================================================
    # --- UNIDADES DE TRABALHO E HELPERS INTERNOS ---
    # ==========================================================================

    @log_function_io
    def _finalize_generation(self, final_latents: torch.Tensor, base_filename: str, seed: int) -> Tuple[str, str]:
        """Delegates final decoding and encoding to specialist services."""
        logging.info("Finalizing generation: decoding latents and encoding video.")
        
        final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
        torch.save(final_latents, final_latents_path)
        logging.info(f"Final latents saved to: {final_latents_path}")
        
        pixel_tensor = vae_aduc_pipeline.decode_to_pixels(
            final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))
        )
        video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
        return str(video_path), str(final_latents_path)
    
    def _apply_ui_overrides(self, config_dict: Dict, overrides: Dict):
        """Applies advanced settings from the UI to a config dictionary."""
        # Override step counts
        for key in ["num_inference_steps", "skip_initial_inference_steps", "skip_final_inference_steps"]:
            ui_value = overrides.get(key)
            if ui_value and ui_value > 0:
                config_dict[key] = ui_value
                logging.info(f"Override: '{key}' set to {ui_value} by UI.")

    @log_function_io
    def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
            video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS)
            final_path = RESULTS_DIR / f"{base_filename}.mp4"
            shutil.move(temp_path, final_path)
            logging.info(f"Video saved successfully to: {final_path}")
            return final_path
    
    def _apply_precision_policy(self):
        precision = str(self.config.get("precision", "bfloat16")).lower()
        if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
        elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
        else: self.runtime_autocast_dtype = torch.float32
        logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")

    def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT, alignment_rule: str = 'default') -> int:
        if alignment_rule == 'n*8+1':
             return ((dim - 1) // alignment) * alignment + 1
        return ((dim - 1) // alignment + 1) * alignment
    
    def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
        num_frames = int(round(duration_s * DEFAULT_FPS))
        aligned_frames = self._align(num_frames, alignment=FRAMES_ALIGNMENT)
        return max(aligned_frames, min_frames)

    def _get_random_seed(self) -> int:
        return random.randint(0, 2**32 - 1)

# ==============================================================================
# --- INSTANCIAÇÃO SINGLETON ---
# ==============================================================================
ltx_aduc_pipeline = LtxAducPipeline()
logging.info("Global VideoService orchestrator instance created successfully.")