File size: 3,837 Bytes
42998d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# FILE: api/ltx_pool_manager.py
# DESCRIPTION: The "secret weapon". A pool manager for LTX that applies
# runtime patches to the pipeline for full control and ADUC-SDR compatibility.

import logging
from typing import List, Optional, Tuple, Union
from dataclasses import dataclass
import torch
from diffusers.utils.torch_utils import randn_tensor

# --- Importações da nossa arquitetura ---
from api.gpu_manager import gpu_manager
from api.ltx.ltx_utils import build_ltx_pipeline_on_cpu
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline

# --- Definição dos nossos Data Classes ---
@dataclass
class ConditioningItem:
    pixel_tensor: torch.Tensor # Sempre um tensor de pixel
    media_frame_number: int
    conditioning_strength: float

@dataclass
class LatentConditioningItem:
    latent_tensor: torch.Tensor # Sempre um tensor latente
    media_frame_number: int
    conditioning_strength: float

# ==============================================================================
# --- O MONKEY PATCH ---
# Esta é a nossa versão customizada de `prepare_conditioning`
# ==============================================================================

def _aduc_prepare_conditioning_patch(
    self: "LTXVideoPipeline",
    conditioning_items: Optional[List[Union[ConditioningItem, LatentConditioningItem]]],
    init_latents: torch.Tensor,
    num_frames: int,
    height: int,
    width: int,
    vae_per_channel_normalize: bool = False,
    generator=None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
    
    # Esta função é uma cópia modificada da sua, com logging e pequenas melhorias.
    
    # (O código do patch que você forneceu vai aqui, ligeiramente ajustado)
    # ...

    return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents


# ==============================================================================
# --- LTX Worker e Pool Manager ---
# ==============================================================================

class LTXWorker:
    """Gerencia uma instância do LTX Pipeline em um par de GPUs (main + vae)."""
    def __init__(self, main_device: str, vae_device: str, config: dict):
        self.main_device = torch.device(main_device)
        self.vae_device = torch.device(vae_device)
        self.config = config
        self.pipeline: LTXVideoPipeline = None
        
        self._load_and_patch_pipeline()

    def _load_and_patch_pipeline(self):
        logging.info(f"[LTXWorker-{self.main_device}] Carregando pipeline LTX para a CPU...")
        self.pipeline, _ = build_ltx_pipeline_on_cpu(self.config)
        
        logging.info(f"[LTXWorker-{self.main_device}] Movendo pipeline para GPUs (Main: {self.main_device}, VAE: {self.vae_device})...")
        self.pipeline.to(self.main_device)
        self.pipeline.vae.to(self.vae_device)

        logging.info(f"[LTXWorker-{self.main_device}] Aplicando patch ADUC-SDR na função 'prepare_conditioning'...")
        # A "mágica" do monkey patching acontece aqui
        self.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(self.pipeline, LTXVideoPipeline)
        logging.info(f"[LTXWorker-{self.main_device}] ✅ Pipeline 'quente', corrigido e pronto.")


class LTXPoolManager:
    # (Padrão Singleton, similar ao VincePoolManager)
    # ...
    
    def __init__(self):
        # ...
        main_device = gpu_manager.get_ltx_device()
        vae_device = gpu_manager.get_ltx_vae_device()
        # Em uma arquitetura futura, poderíamos ter múltiplos workers. Por enquanto, temos um.
        self.worker = LTXWorker(str(main_device), str(vae_device), self._load_config())
        # ...

    def get_pipeline(self) -> LTXVideoPipeline:
        return self.worker.pipeline

# Instância Singleton
ltx_pool_manager = LTXPoolManager()