Spaces:
Paused
Paused
File size: 34,323 Bytes
f8baf05 655068e f8baf05 655068e f8baf05 655068e f8baf05 655068e f8baf05 655068e c9413de f8baf05 655068e f8baf05 655068e f8baf05 cddb415 f8baf05 9916d25 f8baf05 cddb415 f8baf05 a7e6912 8f4f2d6 2a6997e 2193363 2a6997e 1a0f5ad 140e6ff c9413de f8baf05 655068e f8baf05 c9413de f8baf05 655068e f8baf05 8f4f2d6 f8baf05 655068e f8baf05 c9413de f8baf05 8f4f2d6 f8baf05 8f4f2d6 f8baf05 8f4f2d6 f8baf05 cddb415 f8baf05 655068e f8baf05 868bf66 f8baf05 c9413de f8baf05 c9413de f8baf05 655068e c9413de 655068e 8f4f2d6 7809765 8f4f2d6 4dfb0c3 8f4f2d6 4dfb0c3 8f4f2d6 37709cf 8f4f2d6 7809765 b2348be 4dfb0c3 8f4f2d6 4dfb0c3 b2348be 4dfb0c3 b2348be 8f4f2d6 b2348be 8f4f2d6 b2348be 8f4f2d6 09a21ee 8f4f2d6 655068e a74cf78 7809765 620d5aa 37709cf 7809765 655068e a74cf78 dd4ee4f 37709cf 834f08d a74cf78 655068e 8f4f2d6 655068e 4dfb0c3 8f4f2d6 4dfb0c3 4f4406c 8f4f2d6 655068e 8f4f2d6 34ff926 655068e 8f4f2d6 655068e 8f4f2d6 655068e 78b5cca 655068e 8f4f2d6 655068e 8f4f2d6 655068e 8f4f2d6 655068e e6999b3 8f4f2d6 655068e 8f4f2d6 655068e 8f4f2d6 78b5cca 655068e 78b5cca 655068e 78b5cca 655068e f8baf05 78b5cca f8baf05 a7e6912 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
# FILE: api/ltx_server_refactored_complete.py
# DESCRIPTION: Final backend service for LTX-Video generation.
# Features dedicated VAE device logic, robust initialization, and narrative chunking.
import gc
import io
import json
import logging
import os
import random
import shutil
import subprocess
import sys
import tempfile
import time
import traceback
import warnings
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import torch
import yaml
import numpy as np
from einops import rearrange
from huggingface_hub import hf_hub_download
# ==============================================================================
# --- INITIAL SETUP & CONFIGURATION ---
# ==============================================================================
warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
logging.basicConfig(level=logging.INFO, format='[%(levelname)s] %(message)s')
# --- CONSTANTS ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
BASE_CONFIG_PATH = LTX_VIDEO_REPO_DIR / "configs"
DEFAULT_CONFIG_FILE = BASE_CONFIG_PATH / "ltxv-13b-0.9.8-distilled-fp8.yaml"
LTX_REPO_ID = "Lightricks/LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8
# --- CRITICAL: DEPENDENCY PATH INJECTION ---
def add_deps_to_path():
"""Adds the LTX repository directory to the Python system path for imports."""
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
logging.info(f"LTX-Video repository added to sys.path: {repo_path}")
add_deps_to_path()
# --- PROJECT IMPORTS ---
try:
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline # E outros...
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.schedulers.rf import RectifiedFlowScheduler
from transformers import T5EncoderModel, T5Tokenizer
from safetensors import safe_open
from managers.gpu_manager import gpu_manager
from ltx_video.models.autoencoders.vae_encode import (normalize_latents, un_normalize_latents)
from ltx_video.pipelines.pipeline_ltx_video import (ConditioningItem, LTXMultiScalePipeline, adain_filter_latent)
from ltx_video.utils.inference_utils import load_image_to_tensor_with_resize_and_crop
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
except ImportError as e:
logging.critical(f"A crucial LTX import failed. Check LTX-Video repo integrity. Error: {e}")
sys.exit(1)
# ==============================================================================
# --- UTILITY & HELPER FUNCTIONS ---
# ==============================================================================
def seed_everything(seed: int):
"""Sets the seed for reproducibility."""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
"""Calculates symmetric padding values."""
pad_h = target_h - orig_h
pad_w = target_w - orig_w
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
pad_left = pad_w // 2
pad_right = pad_w - pad_left
return (pad_left, pad_right, pad_top, pad_bottom)
def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
"""Logs detailed debug information about a PyTorch tensor."""
if not isinstance(tensor, torch.Tensor):
logging.debug(f"'{name}' is not a tensor.")
return
info_str = (
f"--- Tensor: {name} ---\n"
f" - Shape: {tuple(tensor.shape)}\n"
f" - Dtype: {tensor.dtype}\n"
f" - Device: {tensor.device}\n"
)
if tensor.numel() > 0:
try:
info_str += (
f" - Min: {tensor.min().item():.4f} | "
f"Max: {tensor.max().item():.4f} | "
f"Mean: {tensor.mean().item():.4f}\n"
)
except Exception:
pass # Fails on some dtypes
logging.debug(info_str + "----------------------")
# (O resto das importações e configurações iniciais permanecem as mesmas)
import logging
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as ll
ll.set_verbosity_error()
ll.set_verbosity_warning()
ll.set_verbosity_info()
ll.set_verbosity_debug()
logger = logging.getLogger("AducDebug")
logging.basicConfig(level=logging.DEBUG)
logger.setLevel(logging.DEBUG)
class LtxAducPipeline:
def __init__(self):
"""Initializes the service with dedicated GPU logic for main pipeline and VAE."""
t0 = time.perf_counter()
logging.info("Initializing VideoService...")
RESULTS_DIR.mkdir(parents=True, exist_ok=True)
target_main_device_str = str(gpu_manager.get_ltx_device())
target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")
self.config = self._load_config()
self.pipeline, self.latent_upsampler = self._load_models()
self.main_device = torch.device("cpu")
self.vae_device = torch.device("cpu")
self.move_to_device(main_device_str=target_main_device_str, vae_device_str=target_vae_device_str)
self._apply_precision_policy()
vae_manager_singleton.attach_pipeline(
self.pipeline,
device=self.vae_device,
autocast_dtype=self.runtime_autocast_dtype
)
self._tmp_dirs = set()
logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s")
# ==========================================================================
# --- LIFECYCLE & MODEL MANAGEMENT ---
# ==========================================================================
def _load_config(self) -> Dict:
"""Loads the YAML configuration file."""
config_path = DEFAULT_CONFIG_FILE
logging.info(f"Loading config from: {config_path}")
with open(config_path, "r") as file:
return yaml.safe_load(file)
def _load_models(self) -> Tuple[LTXVideoPipeline, Optional[torch.nn.Module]]:
"""
Carrega todos os sub-modelos do pipeline na CPU.
Esta função substitui a necessidade de chamar a `create_ltx_video_pipeline` externa,
dando-nos controle total sobre o processo.
"""
t0 = time.perf_counter()
logging.info("Carregando sub-modelos do LTX para a CPU...")
ckpt_path = Path(self.config["checkpoint_path"])
if not ckpt_path.is_file():
raise FileNotFoundError(f"Arquivo de checkpoint principal não encontrado em: {ckpt_path}")
# 1. Carrega Metadados do Checkpoint
with safe_open(ckpt_path, framework="pt") as f:
metadata = f.metadata() or {}
config_str = metadata.get("config", "{}")
configs = json.loads(config_str)
allowed_inference_steps = configs.get("allowed_inference_steps")
# 2. Carrega os Componentes Individuais (todos na CPU)
# O `.from_pretrained(ckpt_path)` é inteligente e carrega os pesos corretos do arquivo .safetensors.
logging.info("Carregando VAE...")
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")
logging.info("Carregando Transformer...")
transformer = Transformer3DModel.from_pretrained(ckpt_path).to("cpu")
logging.info("Carregando Scheduler...")
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
logging.info("Carregando Text Encoder e Tokenizer...")
text_encoder_path = self.config["text_encoder_model_name_or_path"]
text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder").to("cpu")
tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer")
patchifier = SymmetricPatchifier(patch_size=1)
# 3. Define a precisão dos modelos (ainda na CPU, será aplicado na GPU depois)
precision = self.config.get("precision", "bfloat16")
if precision == "bfloat16":
vae.to(torch.bfloat16)
transformer.to(torch.bfloat16)
text_encoder.to(torch.bfloat16)
# 4. Monta o objeto do Pipeline com os componentes carregados
logging.info("Montando o objeto LTXVideoPipeline...")
submodel_dict = {
"transformer": transformer,
"patchifier": patchifier,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"vae": vae,
"allowed_inference_steps": allowed_inference_steps,
# Os prompt enhancers são opcionais e não são carregados por padrão para economizar memória
"prompt_enhancer_image_caption_model": None,
"prompt_enhancer_image_caption_processor": None,
"prompt_enhancer_llm_model": None,
"prompt_enhancer_llm_tokenizer": None,
}
pipeline = LTXVideoPipeline(**submodel_dict)
# 5. Carrega o Latent Upsampler (também na CPU)
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
logging.info("Carregando Latent Upsampler...")
spatial_path = self.config["spatial_upscaler_model_path"]
latent_upsampler = create_latent_upsampler(spatial_path, device="cpu")
if precision == "bfloat16":
latent_upsampler.to(torch.bfloat16)
logging.info(f"Modelos LTX carregados na CPU em {time.perf_counter()-t0:.2f}s")
return pipeline, latent_upsampler
def create_latent_upsampler(latent_upsampler_model_path: str, device: str) -> LatentUpsampler:
"""Loads the Latent Upsampler model from a checkpoint path."""
logging.info(f"Loading Latent Upsampler from: {latent_upsampler_model_path} to device: {device}")
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
latent_upsampler.to(device)
latent_upsampler.eval()
return latent_upsampler
def move_to_device(self, main_device_str: str, vae_device_str: str):
"""Moves pipeline components to their target devices."""
target_main_device = torch.device(main_device_str)
target_vae_device = torch.device(vae_device_str)
logging.info(f"Moving LTX models -> Main Pipeline: {target_main_device}, VAE: {target_vae_device}")
self.main_device = target_main_device
self.pipeline.to(self.main_device)
self.vae_device = target_vae_device
self.pipeline.vae.to(self.vae_device)
if self.latent_upsampler:
self.latent_upsampler.to(self.main_device)
logging.info("LTX models successfully moved to target devices.")
def move_to_cpu(self):
"""Moves all LTX components to CPU to free VRAM."""
self.move_to_device(main_device_str="cpu", vae_device_str="cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
def finalize(self):
"""Cleans up GPU memory after a generation task."""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
try: torch.cuda.ipc_collect();
except Exception: pass
# ==========================================================================
# --- PUBLIC ORCHESTRATORS ---
# ==========================================================================
def generate_narrative_low(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
"""[ORCHESTRATOR] Generates a video from a multi-line prompt (sequence of scenes)."""
logging.info("Starting narrative low-res generation...")
used_seed = self._resolve_seed(kwargs.get("seed"))
seed_everything(used_seed)
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
if not prompt_list:
raise ValueError("Prompt is empty or contains no valid lines.")
num_chunks = len(prompt_list)
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT
overlap_frames = self.config.get("overlap_frames", 8)
all_latents_paths = []
overlap_condition_item = None
try:
for i, chunk_prompt in enumerate(prompt_list):
logging.info(f"Generating narrative chunk {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
current_frames = frames_per_chunk
if i > 0: current_frames += overlap_frames
current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
if overlap_condition_item: current_conditions.append(overlap_condition_item)
chunk_latents = self._generate_single_chunk_low(
prompt=chunk_prompt,
num_frames=current_frames,
seed=used_seed + i,
conditioning_items=current_conditions,
**kwargs
)
if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for chunk {i+1}.")
if i < num_chunks - 1:
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
overlap_condition_item = ConditioningItem(media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0)
if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
torch.save(chunk_latents.cpu(), chunk_path)
all_latents_paths.append(chunk_path)
return self._finalize_generation(all_latents_paths, "narrative_video", used_seed)
except Exception as e:
logging.error(f"Error during narrative generation: {e}", exc_info=True)
return None, None, None
finally:
for path in all_latents_paths:
if path.exists(): path.unlink()
self.finalize()
def generate_single_low(self, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
"""[ORCHESTRATOR] Generates a video from a single prompt in one go."""
logging.info("Starting single-prompt low-res generation...")
used_seed = self._resolve_seed(kwargs.get("seed"))
seed_everything(used_seed)
try:
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0), min_frames=9)
final_latents = self._generate_single_chunk_low(
num_frames=total_frames,
seed=used_seed,
conditioning_items=kwargs.get("initial_conditions", []),
**kwargs
)
if final_latents is None: raise RuntimeError("Failed to generate latents.")
latents_path = RESULTS_DIR / f"temp_single_{used_seed}.pt"
torch.save(final_latents.cpu(), latents_path)
return self._finalize_generation([latents_path], "single_video", used_seed)
except Exception as e:
logging.error(f"Error during single generation: {e}", exc_info=True)
return None, None, None
finally:
self.finalize()
# ==========================================================================
# --- INTERNAL WORKER & HELPER METHODS ---
# ==========================================================================
def _generate_single_chunk_low(
self, prompt: str, negative_prompt: str, height: int, width: int, num_frames: int, seed: int,
conditioning_items: List[ConditioningItem], ltx_configs_override: Optional[Dict], **kwargs
) -> Optional[torch.Tensor]:
"""[WORKER] Generates a single chunk of latents. This is the core generation unit."""
height_padded, width_padded = (self._align(d) for d in (height, width))
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
first_pass_config = self.config.get("first_pass", {}).copy()
if ltx_configs_override:
first_pass_config.update(self._prepare_guidance_overrides(ltx_configs_override))
pipeline_kwargs = {
"prompt": prompt, "negative_prompt": negative_prompt,
"height": downscaled_height, "width": downscaled_width,
"num_frames": num_frames, "frame_rate": DEFAULT_FPS,
"generator": torch.Generator(device=self.main_device).manual_seed(seed),
"output_type": "latent", "conditioning_items": conditioning_items,
**first_pass_config
}
with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
latents_raw = self.pipeline(**pipeline_kwargs).images
log_tensor_info(latents_raw, f"Raw Latents for '{prompt[:40]}...'")
return latents_raw
@log_function_io
def generate_low_resolution(
self,
prompt_list: List[str],
initial_media_items: Optional[List[Tuple[Union[str, Image.Image, torch.Tensor], int, float]]] = None,
**kwargs
) -> Tuple[Optional[str], Optional[str], Optional[int]]:
# O bloco try...finally garante que _cleanup() seja sempre chamado.
try:
logging.info("Starting unified low-resolution generation...")
used_seed = self._get_random_seed()
seed_everything(used_seed)
logging.info(f"Using randomly generated seed: {used_seed}")
if not prompt_list: raise ValueError("Prompt list cannot be empty.")
is_narrative = len(prompt_list) > 1
num_chunks = len(prompt_list)
#total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
total_frames = max(9, int(round((round(kwargs.get("duration", 1.0) * DEFAULT_FPS) - 1) / 8.0) * 8 + 1))
frames_per_chunk = max(FRAMES_ALIGNMENT, (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT)
overlap_frames = 4 if is_narrative else 0
initial_conditions = []
if initial_media_items:
initial_conditions = vae_aduc_pipeline.generate_conditioning_items(
media_items=[item[0] for item in initial_media_items],
target_frames=[item[1] for item in initial_media_items],
strengths=[item[2] for item in initial_media_items],
target_resolution=(kwargs['height'], kwargs['width'])
)
height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
stg_mode_str = self.config.get("stg_mode", "attention_values")
stg_strategy = None
if stg_mode_str.lower() in ["stg_av", "attention_values"]: stg_strategy = SkipLayerStrategy.AttentionValues
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]: stg_strategy = SkipLayerStrategy.AttentionSkip
elif stg_mode_str.lower() in ["stg_r", "residual"]: stg_strategy = SkipLayerStrategy.Residual
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]: stg_strategy = SkipLayerStrategy.TransformerBlock
height_padded = ((kwargs['height'] - 1) // 8 + 1) * 8
width_padded = ((kwargs['width'] - 1) // 8 + 1) * 8
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
x_width = int(width_padded * downscale_factor)
downscaled_width = x_width - (x_width % vae_scale_factor)
x_height = int(height_padded * downscale_factor)
downscaled_height = x_height - (x_height % vae_scale_factor)
call_kwargs = {
"height": downscaled_height,
"width": downscaled_width,
"skip_initial_inference_steps": 3,
"skip_final_inference_steps": 0,
"num_inference_steps": 30,
"negative_prompt": kwargs['negative_prompt'],
"guidance_scale": self.config.get("guidance_scale", [1, 1, 6, 8, 6, 1, 1]),
"stg_scale": self.config.get("stg_scale", [0, 0, 4, 4, 4, 2, 1]),
"rescaling_scale": self.config.get("rescaling_scale", [1, 1, 0.5, 0.5, 1, 1, 1]),
"skip_block_list": self.config.get("skip_block_list", [[], [11, 25, 35, 39], [22, 35, 39], [28], [28], [28], [28]]),
"frame_rate": int(DEFAULT_FPS),
"generator": torch.Generator(device=self.main_device).manual_seed(self._get_random_seed()),
"output_type": "latent",
"media_items": None,
"decode_timestep": self.config.get("decode_timestep", 0.05),
"decode_noise_scale": self.config.get("decode_noise_scale", 0.025),
"is_video": True,
"vae_per_channel_normalize": True,
"offload_to_cpu": False,
"enhance_prompt": False,
"num_frames": total_frames,
"downscale_factor": self.config.get("downscale_factor", 0.6666666),
"rescaling_scale": self.config.get("rescaling_scale", [1, 1, 0.5, 0.5, 1, 1, 1]),
"guidance_timesteps": self.config.get("guidance_timesteps", [1.0, 0.996, 0.9933, 0.9850, 0.9767, 0.9008, 0.6180]),
"skip_block_list": self.config.get("skip_block_list", [[], [11, 25, 35, 39], [22, 35, 39], [28], [28], [28], [28]]),
"sampler": self.config.get("sampler", "from_checkpoint"),
"precision": self.config.get("precision", "float8_e4m3fn"),
"stochastic_sampling": self.config.get("stochastic_sampling", False),
"cfg_star_rescale": self.config.get("cfg_star_rescale", True),
}
ltx_configs_override = kwargs.get("ltx_configs_override", {})
if ltx_configs_override: call_kwargs.update(ltx_configs_override)
#if initial_conditions: call_kwargs["conditioning_items"] = initial_conditions
overlap_latents = None
# --- ETAPA 1: GERAÇÃO DE CHUNKS E SALVAMENTO ---
for i, chunk_prompt in enumerate(prompt_list):
logging.info(f"Processing scene {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
call_kwargs.pop("prompt", None)
call_kwargs["prompt"] = chunk_prompt
print (f"overlap_latents {call_kwargs}")
with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
chunk_latents = self.pipeline(**call_kwargs).images
if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for scene {i+1}.")
if is_narrative and i < num_chunks - 1:
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
#call_kwargs["conditioning_items"] = [LatentConditioningItem(overlap_latents, 0, 1.0)]
print (f"overlap_latents {overlap_latents.shape}")
else:
call_kwargs.pop("conditioning_items", None)
print (f"chunk_latents {chunk_latents.shape}")
#if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
# --- NOVO: Rastreia o arquivo para limpeza ---
self._temp_files.append(chunk_path)
torch.save(chunk_latents.cpu(), chunk_path)
del chunk_latents
# --- ETAPA 2: CONCATENAÇÃO DOS LATENTES (CPU) ---
logging.info(f"Concatenating {len(self._temp_files)} latent chunks on CPU...")
all_tensors_cpu = [torch.load(p) for p in self._temp_files]
final_latents_cpu = torch.cat(all_tensors_cpu, dim=2)
logging.info(f"Concatenating SuperLat {final_latents_cpu.shape}")
# --- ETAPA 3 e 4: FINALIZAÇÃO ---
base_filename = "narrative_video" if is_narrative else "single_video"
video_path, latents_path = self._finalize_generation(final_latents_cpu, base_filename, used_seed)
return video_path, latents_path, used_seed
finally:
# --- NOVO: A chamada de limpeza inteligente sempre ocorre ---
self._cleanup()
# (O resto das funções de _finalize_generation, _save_and_log_video, etc., permanecem as mesmas)
@log_function_io
def _finalize_generation1(self, final_latents_cpu: torch.Tensor, base_filename: str, seed: int) -> Tuple[str, str]:
final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
torch.save(final_latents_cpu, final_latents_path)
logging.info(f"Final latents saved to: {final_latents_path}")
logging.info("Delegating to VaeServer for decoding latents to pixels...")
pixel_tensor_cpu = vae_aduc_pipeline.decode_to_pixels(
final_latents_cpu, decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
logging.info("Delegating to VideoEncodeTool to save pixel tensor as MP4...")
video_path = self._save_and_log_video(pixel_tensor_cpu, f"{base_filename}_{seed}")
return str(video_path), str(final_latents_path)
@log_function_io
def _save_and_log_video(self, pixel_tensor_cpu: torch.Tensor, base_filename: str) -> Path:
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
video_encode_tool_singleton.save_video_from_tensor(pixel_tensor_cpu, temp_path, fps=DEFAULT_FPS)
final_path = RESULTS_DIR / f"{base_filename}.mp4"
shutil.move(temp_path, final_path)
logging.info(f"Video saved successfully to: {final_path}")
return final_path
def _apply_precision_policy1(self):
precision = str(self.config.get("precision", "bfloat16")).lower()
if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
else: self.runtime_autocast_dtype = torch.float32
logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")
def _align1(self, dim: int, alignment: int = FRAMES_ALIGNMENT, alignment_rule: str = 'default') -> int:
if alignment_rule == 'n*8+1':
return ((dim - 1) // alignment) * alignment + 1
return ((dim - 1) // alignment + 1) * alignment
def _calculate_aligned_frames1(self, duration_s: float, min_frames: int = 1) -> int:
num_frames = int(round(duration_s * DEFAULT_FPS))
aligned_frames = self._align(num_frames, alignment=FRAMES_ALIGNMENT)
return max(aligned_frames, min_frames)
def _get_random_seed(self) -> int:
return random.randint(0, 2**32 - 1)
def _finalize_generation(self, latents_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
"""Loads latents, concatenates, decodes to video, and saves both."""
logging.info("Finalizing generation: decoding latents to video.")
all_tensors_cpu = [torch.load(p) for p in latents_paths]
final_latents = torch.cat(all_tensors_cpu, dim=2)
final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
torch.save(final_latents, final_latents_path)
logging.info(f"Final latents saved to: {final_latents_path}")
# The decode method in vae_manager now handles moving the tensor to the correct VAE device.
pixel_tensor = vae_manager_singleton.decode(
final_latents,
decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
return str(video_path), str(final_latents_path), seed
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
"""Prepares a list of ConditioningItem objects from file paths or tensors."""
if not items_list: return []
height_padded, width_padded = self._align(height), self._align(width)
padding_values = calculate_padding(height, width, height_padded, width_padded)
conditioning_items = []
for media, frame, weight in items_list:
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
safe_frame = max(0, min(int(frame), num_frames - 1))
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
return conditioning_items
def _prepare_conditioning_tensor(self, media_path: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
"""Loads and processes an image to be a conditioning tensor."""
tensor = load_image_to_tensor_with_resize_and_crop(media_path, height, width)
tensor = torch.nn.functional.pad(tensor, padding)
# Conditioning tensors are needed on the main device for the transformer pass
return tensor.to(self.main_device, dtype=self.runtime_autocast_dtype)
def _prepare_guidance_overrides(self, ltx_configs: Dict) -> Dict:
"""Parses UI presets for guidance into pipeline-compatible arguments."""
overrides = {}
preset = ltx_configs.get("guidance_preset", "Padrão (Recomendado)")
if preset == "Agressivo":
overrides["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
elif preset == "Suave":
overrides["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
elif preset == "Customizado":
try:
overrides["guidance_scale"] = json.loads(ltx_configs["guidance_scale_list"])
overrides["stg_scale"] = json.loads(ltx_configs["stg_scale_list"])
except (json.JSONDecodeError, KeyError) as e:
logging.warning(f"Failed to parse custom guidance values: {e}. Falling back to defaults.")
if overrides: logging.info(f"Applying '{preset}' guidance preset overrides.")
return overrides
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
"""Saves a pixel tensor (on CPU) to an MP4 file."""
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
video_encode_tool_singleton.save_video_from_tensor(
pixel_tensor, temp_path, fps=DEFAULT_FPS
)
final_path = RESULTS_DIR / f"{base_filename}.mp4"
shutil.move(temp_path, final_path)
logging.info(f"Video saved successfully to: {final_path}")
return final_path
def _apply_precision_policy(self):
"""Sets the autocast dtype based on the configuration file."""
precision = str(self.config.get("precision", "bfloat16")).lower()
if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
else: self.runtime_autocast_dtype = torch.float32
logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")
def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT) -> int:
"""Aligns a dimension to the nearest multiple of `alignment`."""
return ((dim - 1) // alignment + 1) * alignment
def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
"""Calculates total frames based on duration, ensuring alignment."""
num_frames = int(round(duration_s * DEFAULT_FPS))
aligned_frames = self._align(num_frames)
return max(aligned_frames + 1, min_frames)
def _resolve_seed(self, seed: Optional[int]) -> int:
"""Returns the given seed or generates a new random one."""
return random.randint(0, 2**32 - 1) if seed is None else int(seed)
ltx_aduc_pipeline = LtxAducPipeline()
logging.info("Global VideoService orchestrator instance created successfully.") |