File size: 34,323 Bytes
f8baf05
 
 
 
655068e
f8baf05
655068e
f8baf05
655068e
f8baf05
655068e
f8baf05
655068e
 
c9413de
f8baf05
 
655068e
f8baf05
 
655068e
 
 
f8baf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cddb415
f8baf05
 
 
 
 
 
9916d25
f8baf05
cddb415
f8baf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e6912
8f4f2d6
2a6997e
2193363
 
 
2a6997e
 
 
 
 
1a0f5ad
 
 
140e6ff
c9413de
f8baf05
655068e
f8baf05
 
 
 
c9413de
f8baf05
 
655068e
f8baf05
 
 
 
 
 
 
8f4f2d6
f8baf05
 
655068e
f8baf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9413de
f8baf05
8f4f2d6
f8baf05
 
 
8f4f2d6
f8baf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4f2d6
f8baf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cddb415
 
 
 
 
 
 
 
f8baf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655068e
 
f8baf05
 
 
 
 
 
 
 
 
868bf66
f8baf05
 
 
 
c9413de
f8baf05
 
 
c9413de
f8baf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655068e
 
c9413de
 
655068e
 
 
 
8f4f2d6
 
 
 
 
 
7809765
8f4f2d6
 
 
4dfb0c3
 
 
 
8f4f2d6
4dfb0c3
8f4f2d6
 
 
 
 
 
 
 
 
37709cf
8f4f2d6
 
 
 
 
 
 
 
 
 
 
 
7809765
b2348be
4dfb0c3
 
 
 
 
 
 
 
 
8f4f2d6
4dfb0c3
 
b2348be
 
 
4dfb0c3
b2348be
 
 
 
 
8f4f2d6
b2348be
 
 
 
 
 
 
8f4f2d6
b2348be
 
 
 
 
 
 
 
 
8f4f2d6
 
 
 
09a21ee
 
 
8f4f2d6
 
655068e
 
a74cf78
7809765
620d5aa
 
37709cf
7809765
 
655068e
 
 
 
a74cf78
dd4ee4f
37709cf
834f08d
a74cf78
 
 
 
655068e
 
8f4f2d6
 
655068e
4dfb0c3
 
8f4f2d6
 
 
 
4dfb0c3
 
4f4406c
8f4f2d6
655068e
8f4f2d6
34ff926
655068e
8f4f2d6
 
 
655068e
8f4f2d6
655068e
78b5cca
655068e
8f4f2d6
655068e
 
8f4f2d6
 
 
655068e
8f4f2d6
 
 
 
655068e
e6999b3
 
8f4f2d6
655068e
 
8f4f2d6
655068e
 
 
 
8f4f2d6
78b5cca
655068e
 
 
 
 
 
78b5cca
655068e
 
 
 
78b5cca
655068e
 
 
 
 
 
 
f8baf05
78b5cca
f8baf05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e6912
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
# FILE: api/ltx_server_refactored_complete.py
# DESCRIPTION: Final backend service for LTX-Video generation.
#              Features dedicated VAE device logic, robust initialization, and narrative chunking.

import gc
import io
import json
import logging
import os
import random
import shutil
import subprocess
import sys
import tempfile
import time
import traceback
import warnings
from pathlib import Path
from typing import Dict, List, Optional, Tuple

import torch
import yaml
import numpy as np
from einops import rearrange
from huggingface_hub import hf_hub_download

# ==============================================================================
# --- INITIAL SETUP & CONFIGURATION ---
# ==============================================================================

warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
logging.basicConfig(level=logging.INFO, format='[%(levelname)s] %(message)s')

# --- CONSTANTS ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
BASE_CONFIG_PATH = LTX_VIDEO_REPO_DIR / "configs"
DEFAULT_CONFIG_FILE = BASE_CONFIG_PATH / "ltxv-13b-0.9.8-distilled-fp8.yaml"
LTX_REPO_ID = "Lightricks/LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8

# --- CRITICAL: DEPENDENCY PATH INJECTION ---
def add_deps_to_path():
    """Adds the LTX repository directory to the Python system path for imports."""
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if repo_path not in sys.path:
        sys.path.insert(0, repo_path)
        logging.info(f"LTX-Video repository added to sys.path: {repo_path}")

add_deps_to_path()

# --- PROJECT IMPORTS ---
try:
    from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline # E outros...
    from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
    from ltx_video.models.transformers.transformer3d import Transformer3DModel
    from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
    from ltx_video.schedulers.rf import RectifiedFlowScheduler
    from transformers import T5EncoderModel, T5Tokenizer
    from safetensors import safe_open
    from managers.gpu_manager import gpu_manager
    from ltx_video.models.autoencoders.vae_encode import (normalize_latents, un_normalize_latents)
    from ltx_video.pipelines.pipeline_ltx_video import (ConditioningItem, LTXMultiScalePipeline, adain_filter_latent)
    from ltx_video.utils.inference_utils import load_image_to_tensor_with_resize_and_crop
    from managers.vae_manager import vae_manager_singleton
    from tools.video_encode_tool import video_encode_tool_singleton
except ImportError as e:
    logging.critical(f"A crucial LTX import failed. Check LTX-Video repo integrity. Error: {e}")
    sys.exit(1)

# ==============================================================================
# --- UTILITY & HELPER FUNCTIONS ---
# ==============================================================================

def seed_everything(seed: int):
    """Sets the seed for reproducibility."""
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
    """Calculates symmetric padding values."""
    pad_h = target_h - orig_h
    pad_w = target_w - orig_w
    pad_top = pad_h // 2
    pad_bottom = pad_h - pad_top
    pad_left = pad_w // 2
    pad_right = pad_w - pad_left
    return (pad_left, pad_right, pad_top, pad_bottom)

def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
    """Logs detailed debug information about a PyTorch tensor."""
    if not isinstance(tensor, torch.Tensor):
        logging.debug(f"'{name}' is not a tensor.")
        return
    
    info_str = (
        f"--- Tensor: {name} ---\n"
        f"  - Shape: {tuple(tensor.shape)}\n"
        f"  - Dtype: {tensor.dtype}\n"
        f"  - Device: {tensor.device}\n"
    )
    if tensor.numel() > 0:
        try:
            info_str += (
                f"  - Min: {tensor.min().item():.4f} | "
                f"Max: {tensor.max().item():.4f} | "
                f"Mean: {tensor.mean().item():.4f}\n"
            )
        except Exception:
            pass # Fails on some dtypes
    logging.debug(info_str + "----------------------")


# (O resto das importações e configurações iniciais permanecem as mesmas)
import logging
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as ll
ll.set_verbosity_error()
ll.set_verbosity_warning()
ll.set_verbosity_info()
ll.set_verbosity_debug()
logger = logging.getLogger("AducDebug")
logging.basicConfig(level=logging.DEBUG)
logger.setLevel(logging.DEBUG)


class LtxAducPipeline:
    def __init__(self):
        """Initializes the service with dedicated GPU logic for main pipeline and VAE."""
        t0 = time.perf_counter()
        logging.info("Initializing VideoService...")
        RESULTS_DIR.mkdir(parents=True, exist_ok=True)

        target_main_device_str = str(gpu_manager.get_ltx_device())
        target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
        
        logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")

        self.config = self._load_config()
        self.pipeline, self.latent_upsampler = self._load_models()

        self.main_device = torch.device("cpu")
        self.vae_device = torch.device("cpu")
        
        self.move_to_device(main_device_str=target_main_device_str, vae_device_str=target_vae_device_str)

        self._apply_precision_policy()
        vae_manager_singleton.attach_pipeline(
            self.pipeline,
            device=self.vae_device,
            autocast_dtype=self.runtime_autocast_dtype
        )
        self._tmp_dirs = set()
        logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s")

    # ==========================================================================
    # --- LIFECYCLE & MODEL MANAGEMENT ---
    # ==========================================================================

    def _load_config(self) -> Dict:
        """Loads the YAML configuration file."""
        config_path = DEFAULT_CONFIG_FILE
        logging.info(f"Loading config from: {config_path}")
        with open(config_path, "r") as file:
            return yaml.safe_load(file)

    def _load_models(self) -> Tuple[LTXVideoPipeline, Optional[torch.nn.Module]]:
        """
        Carrega todos os sub-modelos do pipeline na CPU.
        Esta função substitui a necessidade de chamar a `create_ltx_video_pipeline` externa,
        dando-nos controle total sobre o processo.
        """
        t0 = time.perf_counter()
        logging.info("Carregando sub-modelos do LTX para a CPU...")

        ckpt_path = Path(self.config["checkpoint_path"])
        if not ckpt_path.is_file():
            raise FileNotFoundError(f"Arquivo de checkpoint principal não encontrado em: {ckpt_path}")

        # 1. Carrega Metadados do Checkpoint
        with safe_open(ckpt_path, framework="pt") as f:
            metadata = f.metadata() or {}
            config_str = metadata.get("config", "{}")
            configs = json.loads(config_str)
            allowed_inference_steps = configs.get("allowed_inference_steps")

        # 2. Carrega os Componentes Individuais (todos na CPU)
        #    O `.from_pretrained(ckpt_path)` é inteligente e carrega os pesos corretos do arquivo .safetensors.
        logging.info("Carregando VAE...")
        vae = CausalVideoAutoencoder.from_pretrained(ckpt_path).to("cpu")

        logging.info("Carregando Transformer...")
        transformer = Transformer3DModel.from_pretrained(ckpt_path).to("cpu")

        logging.info("Carregando Scheduler...")
        scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)

        logging.info("Carregando Text Encoder e Tokenizer...")
        text_encoder_path = self.config["text_encoder_model_name_or_path"]
        text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder").to("cpu")
        tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer")

        patchifier = SymmetricPatchifier(patch_size=1)

        # 3. Define a precisão dos modelos (ainda na CPU, será aplicado na GPU depois)
        precision = self.config.get("precision", "bfloat16")
        if precision == "bfloat16":
            vae.to(torch.bfloat16)
            transformer.to(torch.bfloat16)
            text_encoder.to(torch.bfloat16)
        
        # 4. Monta o objeto do Pipeline com os componentes carregados
        logging.info("Montando o objeto LTXVideoPipeline...")
        submodel_dict = {
            "transformer": transformer,
            "patchifier": patchifier,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
            "vae": vae,
            "allowed_inference_steps": allowed_inference_steps,
            # Os prompt enhancers são opcionais e não são carregados por padrão para economizar memória
            "prompt_enhancer_image_caption_model": None,
            "prompt_enhancer_image_caption_processor": None,
            "prompt_enhancer_llm_model": None,
            "prompt_enhancer_llm_tokenizer": None,
        }
        pipeline = LTXVideoPipeline(**submodel_dict)

        # 5. Carrega o Latent Upsampler (também na CPU)
        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            logging.info("Carregando Latent Upsampler...")
            spatial_path = self.config["spatial_upscaler_model_path"]
            latent_upsampler = create_latent_upsampler(spatial_path, device="cpu")
            if precision == "bfloat16":
                latent_upsampler.to(torch.bfloat16)

        logging.info(f"Modelos LTX carregados na CPU em {time.perf_counter()-t0:.2f}s")
        return pipeline, latent_upsampler

    def create_latent_upsampler(latent_upsampler_model_path: str, device: str) -> LatentUpsampler:
        """Loads the Latent Upsampler model from a checkpoint path."""
        logging.info(f"Loading Latent Upsampler from: {latent_upsampler_model_path} to device: {device}")
        latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
        latent_upsampler.to(device)
        latent_upsampler.eval()
        return latent_upsampler
    
    def move_to_device(self, main_device_str: str, vae_device_str: str):
        """Moves pipeline components to their target devices."""
        target_main_device = torch.device(main_device_str)
        target_vae_device = torch.device(vae_device_str)

        logging.info(f"Moving LTX models -> Main Pipeline: {target_main_device}, VAE: {target_vae_device}")
        
        self.main_device = target_main_device
        self.pipeline.to(self.main_device)

        self.vae_device = target_vae_device
        self.pipeline.vae.to(self.vae_device)

        if self.latent_upsampler:
            self.latent_upsampler.to(self.main_device)
            
        logging.info("LTX models successfully moved to target devices.")

    def move_to_cpu(self):
        """Moves all LTX components to CPU to free VRAM."""
        self.move_to_device(main_device_str="cpu", vae_device_str="cpu")
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    def finalize(self):
        """Cleans up GPU memory after a generation task."""
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            try: torch.cuda.ipc_collect();
            except Exception: pass

    # ==========================================================================
    # --- PUBLIC ORCHESTRATORS ---
    # ==========================================================================


    def generate_narrative_low(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
        """[ORCHESTRATOR] Generates a video from a multi-line prompt (sequence of scenes)."""
        logging.info("Starting narrative low-res generation...")
        used_seed = self._resolve_seed(kwargs.get("seed"))
        seed_everything(used_seed)

        prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
        if not prompt_list:
            raise ValueError("Prompt is empty or contains no valid lines.")

        num_chunks = len(prompt_list)
        total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
        frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT
        overlap_frames = self.config.get("overlap_frames", 8)
        
        all_latents_paths = []
        overlap_condition_item = None
        
        try:
            for i, chunk_prompt in enumerate(prompt_list):
                logging.info(f"Generating narrative chunk {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")

                current_frames = frames_per_chunk
                if i > 0: current_frames += overlap_frames
                
                current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
                if overlap_condition_item: current_conditions.append(overlap_condition_item)

                chunk_latents = self._generate_single_chunk_low(
                    prompt=chunk_prompt,
                    num_frames=current_frames,
                    seed=used_seed + i,
                    conditioning_items=current_conditions,
                    **kwargs
                )

                if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for chunk {i+1}.")

                if i < num_chunks - 1:
                    overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
                    overlap_condition_item = ConditioningItem(media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0)
                
                if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
                
                chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
                torch.save(chunk_latents.cpu(), chunk_path)
                all_latents_paths.append(chunk_path)
            
            return self._finalize_generation(all_latents_paths, "narrative_video", used_seed)

        except Exception as e:
            logging.error(f"Error during narrative generation: {e}", exc_info=True)
            return None, None, None
        finally:
            for path in all_latents_paths:
                if path.exists(): path.unlink()
            self.finalize()


    def generate_single_low(self, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
        """[ORCHESTRATOR] Generates a video from a single prompt in one go."""
        logging.info("Starting single-prompt low-res generation...")
        used_seed = self._resolve_seed(kwargs.get("seed"))
        seed_everything(used_seed)
        
        try:
            total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0), min_frames=9)
            
            final_latents = self._generate_single_chunk_low(
                num_frames=total_frames,
                seed=used_seed,
                conditioning_items=kwargs.get("initial_conditions", []),
                **kwargs
            )
            
            if final_latents is None: raise RuntimeError("Failed to generate latents.")

            latents_path = RESULTS_DIR / f"temp_single_{used_seed}.pt"
            torch.save(final_latents.cpu(), latents_path)
            return self._finalize_generation([latents_path], "single_video", used_seed)

        except Exception as e:
            logging.error(f"Error during single generation: {e}", exc_info=True)
            return None, None, None
        finally:
            self.finalize()

    # ==========================================================================
    # --- INTERNAL WORKER & HELPER METHODS ---
    # ==========================================================================

    def _generate_single_chunk_low(
        self, prompt: str, negative_prompt: str, height: int, width: int, num_frames: int, seed: int,
        conditioning_items: List[ConditioningItem], ltx_configs_override: Optional[Dict], **kwargs
    ) -> Optional[torch.Tensor]:
        """[WORKER] Generates a single chunk of latents. This is the core generation unit."""
        height_padded, width_padded = (self._align(d) for d in (height, width))
        downscale_factor = self.config.get("downscale_factor", 0.6666666)
        vae_scale_factor = self.pipeline.vae_scale_factor

        downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
        downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)

        first_pass_config = self.config.get("first_pass", {}).copy()
        if ltx_configs_override:
             first_pass_config.update(self._prepare_guidance_overrides(ltx_configs_override))

        pipeline_kwargs = {
            "prompt": prompt, "negative_prompt": negative_prompt,
            "height": downscaled_height, "width": downscaled_width,
            "num_frames": num_frames, "frame_rate": DEFAULT_FPS,
            "generator": torch.Generator(device=self.main_device).manual_seed(seed),
            "output_type": "latent", "conditioning_items": conditioning_items,
            **first_pass_config
        }
        
        with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
            latents_raw = self.pipeline(**pipeline_kwargs).images
        
        log_tensor_info(latents_raw, f"Raw Latents for '{prompt[:40]}...'")
        return latents_raw

    
    @log_function_io
    def generate_low_resolution(
        self,
        prompt_list: List[str],
        initial_media_items: Optional[List[Tuple[Union[str, Image.Image, torch.Tensor], int, float]]] = None,
        **kwargs
    ) -> Tuple[Optional[str], Optional[str], Optional[int]]:
        
        # O bloco try...finally garante que _cleanup() seja sempre chamado.
        try:
            logging.info("Starting unified low-resolution generation...")
            used_seed = self._get_random_seed()
            seed_everything(used_seed)
            logging.info(f"Using randomly generated seed: {used_seed}")

            if not prompt_list: raise ValueError("Prompt list cannot be empty.")
            is_narrative = len(prompt_list) > 1
            num_chunks = len(prompt_list)
            #total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
            
            total_frames = max(9, int(round((round(kwargs.get("duration", 1.0) * DEFAULT_FPS) - 1) / 8.0) * 8 + 1))
           
            frames_per_chunk = max(FRAMES_ALIGNMENT, (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT)
            overlap_frames = 4 if is_narrative else 0
            
            initial_conditions = []
            if initial_media_items:
                initial_conditions = vae_aduc_pipeline.generate_conditioning_items(
                    media_items=[item[0] for item in initial_media_items],
                    target_frames=[item[1] for item in initial_media_items],
                    strengths=[item[2] for item in initial_media_items],
                    target_resolution=(kwargs['height'], kwargs['width'])
                )

            height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
            downscale_factor = self.config.get("downscale_factor", 0.6666666)
            vae_scale_factor = self.pipeline.vae_scale_factor
            downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
            downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
            
            stg_mode_str = self.config.get("stg_mode", "attention_values")
            stg_strategy = None
            if stg_mode_str.lower() in ["stg_av", "attention_values"]: stg_strategy = SkipLayerStrategy.AttentionValues
            elif stg_mode_str.lower() in ["stg_as", "attention_skip"]: stg_strategy = SkipLayerStrategy.AttentionSkip
            elif stg_mode_str.lower() in ["stg_r", "residual"]: stg_strategy = SkipLayerStrategy.Residual
            elif stg_mode_str.lower() in ["stg_t", "transformer_block"]: stg_strategy = SkipLayerStrategy.TransformerBlock

        
            height_padded = ((kwargs['height'] - 1) // 8 + 1) * 8
            width_padded = ((kwargs['width'] - 1) // 8 + 1) * 8
            downscale_factor = self.config.get("downscale_factor", 0.6666666)
            vae_scale_factor = self.pipeline.vae_scale_factor
            x_width = int(width_padded * downscale_factor)
            downscaled_width = x_width - (x_width % vae_scale_factor)
            x_height = int(height_padded * downscale_factor)
            downscaled_height = x_height - (x_height % vae_scale_factor)
            
            call_kwargs = {
                "height": downscaled_height, 
                "width": downscaled_width,
                "skip_initial_inference_steps": 3, 
                "skip_final_inference_steps": 0, 
                "num_inference_steps": 30,
                "negative_prompt": kwargs['negative_prompt'], 
                "guidance_scale": self.config.get("guidance_scale", [1, 1, 6, 8, 6, 1, 1]), 
                "stg_scale": self.config.get("stg_scale", [0, 0, 4, 4, 4, 2, 1]),
                "rescaling_scale": self.config.get("rescaling_scale", [1, 1, 0.5, 0.5, 1, 1, 1]), 
                "skip_block_list": self.config.get("skip_block_list", [[], [11, 25, 35, 39], [22, 35, 39], [28], [28], [28], [28]]), 
                "frame_rate": int(DEFAULT_FPS),
                "generator": torch.Generator(device=self.main_device).manual_seed(self._get_random_seed()),
                "output_type": "latent", 
                "media_items": None, 
                "decode_timestep": self.config.get("decode_timestep", 0.05),
                "decode_noise_scale": self.config.get("decode_noise_scale", 0.025), 
                "is_video": True, 
                "vae_per_channel_normalize": True,
                "offload_to_cpu": False,
                "enhance_prompt": False,
                "num_frames": total_frames,
                "downscale_factor": self.config.get("downscale_factor", 0.6666666),
                "rescaling_scale": self.config.get("rescaling_scale",  [1, 1, 0.5, 0.5, 1, 1, 1]),
                "guidance_timesteps": self.config.get("guidance_timesteps", [1.0, 0.996,  0.9933, 0.9850, 0.9767, 0.9008, 0.6180]),
                "skip_block_list": self.config.get("skip_block_list",  [[], [11, 25, 35, 39], [22, 35, 39], [28], [28], [28], [28]]),
                "sampler": self.config.get("sampler", "from_checkpoint"),
                "precision": self.config.get("precision", "float8_e4m3fn"),
                "stochastic_sampling": self.config.get("stochastic_sampling", False),
                "cfg_star_rescale": self.config.get("cfg_star_rescale", True),
            }
            
            ltx_configs_override = kwargs.get("ltx_configs_override", {})
            if ltx_configs_override: call_kwargs.update(ltx_configs_override)
            #if initial_conditions: call_kwargs["conditioning_items"] = initial_conditions
            
            overlap_latents = None
            
            # --- ETAPA 1: GERAÇÃO DE CHUNKS E SALVAMENTO ---
            for i, chunk_prompt in enumerate(prompt_list):
                logging.info(f"Processing scene {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
                call_kwargs.pop("prompt", None)
                call_kwargs["prompt"] = chunk_prompt

                print (f"overlap_latents {call_kwargs}")
                
                with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
                    chunk_latents = self.pipeline(**call_kwargs).images
                if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for scene {i+1}.")

                if is_narrative and i < num_chunks - 1:
                    overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
                    #call_kwargs["conditioning_items"] = [LatentConditioningItem(overlap_latents, 0, 1.0)]
                    print (f"overlap_latents {overlap_latents.shape}")
                else:
                    call_kwargs.pop("conditioning_items", None)

                print (f"chunk_latents {chunk_latents.shape}")
           
                #if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
                
                chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
                # --- NOVO: Rastreia o arquivo para limpeza ---
                self._temp_files.append(chunk_path)
                torch.save(chunk_latents.cpu(), chunk_path)
                del chunk_latents
                
            # --- ETAPA 2: CONCATENAÇÃO DOS LATENTES (CPU) ---
            logging.info(f"Concatenating {len(self._temp_files)} latent chunks on CPU...")
            all_tensors_cpu = [torch.load(p) for p in self._temp_files]
            final_latents_cpu = torch.cat(all_tensors_cpu, dim=2)

            logging.info(f"Concatenating SuperLat {final_latents_cpu.shape}")
            
            # --- ETAPA 3 e 4: FINALIZAÇÃO ---
            base_filename = "narrative_video" if is_narrative else "single_video"
            video_path, latents_path = self._finalize_generation(final_latents_cpu, base_filename, used_seed)
            return video_path, latents_path, used_seed

        finally:
            # --- NOVO: A chamada de limpeza inteligente sempre ocorre ---
            self._cleanup()

    # (O resto das funções de _finalize_generation, _save_and_log_video, etc., permanecem as mesmas)
    @log_function_io
    def _finalize_generation1(self, final_latents_cpu: torch.Tensor, base_filename: str, seed: int) -> Tuple[str, str]:
        final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
        torch.save(final_latents_cpu, final_latents_path)
        logging.info(f"Final latents saved to: {final_latents_path}")
        
        logging.info("Delegating to VaeServer for decoding latents to pixels...")
        pixel_tensor_cpu = vae_aduc_pipeline.decode_to_pixels(
            final_latents_cpu, decode_timestep=float(self.config.get("decode_timestep", 0.05))
        )
        
        logging.info("Delegating to VideoEncodeTool to save pixel tensor as MP4...")
        video_path = self._save_and_log_video(pixel_tensor_cpu, f"{base_filename}_{seed}")
        
        return str(video_path), str(final_latents_path)

    @log_function_io
    def _save_and_log_video(self, pixel_tensor_cpu: torch.Tensor, base_filename: str) -> Path:
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
            video_encode_tool_singleton.save_video_from_tensor(pixel_tensor_cpu, temp_path, fps=DEFAULT_FPS)
            final_path = RESULTS_DIR / f"{base_filename}.mp4"
            shutil.move(temp_path, final_path)
            logging.info(f"Video saved successfully to: {final_path}")
            return final_path
    
    def _apply_precision_policy1(self):
        precision = str(self.config.get("precision", "bfloat16")).lower()
        if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
        elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
        else: self.runtime_autocast_dtype = torch.float32
        logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")

    def _align1(self, dim: int, alignment: int = FRAMES_ALIGNMENT, alignment_rule: str = 'default') -> int:
        if alignment_rule == 'n*8+1':
             return ((dim - 1) // alignment) * alignment + 1
        return ((dim - 1) // alignment + 1) * alignment
    
    def _calculate_aligned_frames1(self, duration_s: float, min_frames: int = 1) -> int:
        num_frames = int(round(duration_s * DEFAULT_FPS))
        aligned_frames = self._align(num_frames, alignment=FRAMES_ALIGNMENT)
        return max(aligned_frames, min_frames)

    def _get_random_seed(self) -> int:
        return random.randint(0, 2**32 - 1)


    def _finalize_generation(self, latents_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
        """Loads latents, concatenates, decodes to video, and saves both."""
        logging.info("Finalizing generation: decoding latents to video.")
        all_tensors_cpu = [torch.load(p) for p in latents_paths]
        final_latents = torch.cat(all_tensors_cpu, dim=2)
        
        final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
        torch.save(final_latents, final_latents_path)
        logging.info(f"Final latents saved to: {final_latents_path}")
        
        # The decode method in vae_manager now handles moving the tensor to the correct VAE device.
        pixel_tensor = vae_manager_singleton.decode(
            final_latents,
            decode_timestep=float(self.config.get("decode_timestep", 0.05))
        )
        
        video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
        return str(video_path), str(final_latents_path), seed

    def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
        """Prepares a list of ConditioningItem objects from file paths or tensors."""
        if not items_list: return []
        height_padded, width_padded = self._align(height), self._align(width)
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        
        conditioning_items = []
        for media, frame, weight in items_list:
            tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
            safe_frame = max(0, min(int(frame), num_frames - 1))
            conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
        return conditioning_items

    def _prepare_conditioning_tensor(self, media_path: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
        """Loads and processes an image to be a conditioning tensor."""
        tensor = load_image_to_tensor_with_resize_and_crop(media_path, height, width)
        tensor = torch.nn.functional.pad(tensor, padding)
        # Conditioning tensors are needed on the main device for the transformer pass
        return tensor.to(self.main_device, dtype=self.runtime_autocast_dtype)

    def _prepare_guidance_overrides(self, ltx_configs: Dict) -> Dict:
        """Parses UI presets for guidance into pipeline-compatible arguments."""
        overrides = {}
        preset = ltx_configs.get("guidance_preset", "Padrão (Recomendado)")
        
        if preset == "Agressivo":
            overrides["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
            overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
        elif preset == "Suave":
            overrides["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
            overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
        elif preset == "Customizado":
            try:
                overrides["guidance_scale"] = json.loads(ltx_configs["guidance_scale_list"])
                overrides["stg_scale"] = json.loads(ltx_configs["stg_scale_list"])
            except (json.JSONDecodeError, KeyError) as e:
                logging.warning(f"Failed to parse custom guidance values: {e}. Falling back to defaults.")
        
        if overrides: logging.info(f"Applying '{preset}' guidance preset overrides.")
        return overrides

    def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
        """Saves a pixel tensor (on CPU) to an MP4 file."""
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
            video_encode_tool_singleton.save_video_from_tensor(
                pixel_tensor, temp_path, fps=DEFAULT_FPS
            )
            final_path = RESULTS_DIR / f"{base_filename}.mp4"
            shutil.move(temp_path, final_path)
            logging.info(f"Video saved successfully to: {final_path}")
            return final_path
    
    def _apply_precision_policy(self):
        """Sets the autocast dtype based on the configuration file."""
        precision = str(self.config.get("precision", "bfloat16")).lower()
        if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
        elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
        else: self.runtime_autocast_dtype = torch.float32
        logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")

    def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT) -> int:
        """Aligns a dimension to the nearest multiple of `alignment`."""
        return ((dim - 1) // alignment + 1) * alignment
    
    def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
        """Calculates total frames based on duration, ensuring alignment."""
        num_frames = int(round(duration_s * DEFAULT_FPS))
        aligned_frames = self._align(num_frames)
        return max(aligned_frames + 1, min_frames)

    def _resolve_seed(self, seed: Optional[int]) -> int:
        """Returns the given seed or generates a new random one."""
        return random.randint(0, 2**32 - 1) if seed is None else int(seed)


ltx_aduc_pipeline = LtxAducPipeline()
logging.info("Global VideoService orchestrator instance created successfully.")