File size: 12,528 Bytes
f877bbb
 
cebfbc8
 
f877bbb
 
 
 
 
 
cebfbc8
 
f877bbb
4da4d44
81a66b1
4da4d44
 
 
 
81a66b1
 
 
 
 
 
345823d
aef9db9
 
 
 
f877bbb
cebfbc8
f877bbb
 
4a6b416
e197751
4a6b416
ca855df
f877bbb
 
 
 
 
 
cebfbc8
 
f877bbb
cebfbc8
f877bbb
 
 
cebfbc8
f877bbb
 
cebfbc8
 
 
 
 
 
 
 
 
f877bbb
cebfbc8
 
 
f877bbb
 
4a6b416
cebfbc8
 
 
 
 
f877bbb
 
cebfbc8
 
 
f877bbb
 
 
cebfbc8
 
 
 
 
 
 
 
 
 
 
4a6b416
cebfbc8
 
 
 
 
 
 
 
 
 
f877bbb
 
 
 
 
 
cebfbc8
f877bbb
 
4a6b416
f877bbb
 
 
 
4a6b416
f877bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cebfbc8
f877bbb
4a6b416
f877bbb
 
 
cebfbc8
4a6b416
0e60328
f877bbb
 
 
 
 
cebfbc8
f877bbb
4a6b416
 
cebfbc8
f877bbb
 
 
 
4a6b416
 
f877bbb
 
cebfbc8
 
 
 
 
f877bbb
cebfbc8
f877bbb
 
cebfbc8
f877bbb
 
 
cebfbc8
 
 
 
 
 
 
 
f877bbb
4a6b416
f877bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cebfbc8
 
f877bbb
 
cebfbc8
f877bbb
cebfbc8
f877bbb
 
 
cebfbc8
 
 
 
 
 
f877bbb
 
 
 
 
 
 
 
 
8c9d6b8
 
 
495c1de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# FILE: app.py
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
# This version is updated to import from the new modular file structure,
# including the renamed ADUC pipelines and moved managers.

import gradio as gr
import traceback
import sys
import os
import logging
from typing import List
from PIL import Image as PILImage


import logging
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as ll
ll.set_verbosity_error()
ll.set_verbosity_warning()
ll.set_verbosity_info()
ll.set_verbosity_debug()

logger = logging.getLogger("AducDebug")
logging.basicConfig(level=logging.DEBUG)
logger.setLevel(logging.DEBUG)


# ==============================================================================
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS (CAMINHOS ATUALIZADOS) ---
# ==============================================================================

from api.ltx.ltx_aduc_pipeline import ltx_aduc_pipeline
from utils.debug_utils import log_function_io
from api.seedvr.seedvr_aduc_pipeline import seed_aduc_pipeline as seed_aduc_pipeline
logging.info("All backend services and utils imported successfully from new paths.")

# ==============================================================================
# --- FUNÇÕES WRAPPER (PONTE ENTRE UI E BACKEND) ---
# ==============================================================================

@log_function_io
def run_generate_base_video(
    prompt: str, neg_prompt: str, start_img: PILImage.Image,
    height: int, width: int, duration: float,
    fp_num_inference_steps: int, fp_skip_initial_steps: int, fp_skip_final_steps: int,
    progress=gr.Progress(track_tqdm=True)
) -> tuple:
    """
    Wrapper final que prepara os dados da UI e chama o backend com a API simplificada.
    """
    try:
        prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
        if not prompt_list:
            raise gr.Error("O campo de prompt não pode estar vazio.")
        logging.info(f"[UI] Request received with {len(prompt_list)} scene(s).")

        initial_media_list = []
        if start_img:
            initial_media_list.append((start_img, 0, 1.0))

        ltx_configs = {
            "num_inference_steps": fp_num_inference_steps,
            "skip_initial_inference_steps": fp_skip_initial_steps,
            "skip_final_inference_steps": fp_skip_final_steps,
        }

        video_path, tensor_path, final_seed = ltx_aduc_pipeline.generate_low_resolution(
            prompt_list=prompt_list,
            negative_prompt=neg_prompt,
            height=height, width=width, duration=duration,
            initial_media_items=initial_media_list,
            ltx_configs_override=ltx_configs
        )
        
        if not video_path: raise RuntimeError("Backend failed to return a valid video path.")
        new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed}
        logging.info(f"[UI] Base video generation successful. Seed used: {final_seed}, Path: {video_path}")
        return video_path, new_state, gr.update(visible=True)
        
    except Exception as e:
        error_message = f"❌ An error occurred during base generation:\n{e}"
        logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
        raise gr.Error(error_message)

@log_function_io
def run_ltx_refinement(state: dict, prompt: str, neg_prompt: str, progress=gr.Progress(track_tqdm=True)) -> tuple:
    """Wrapper para o refinamento de textura LTX."""
    if not state or not state.get("low_res_latents"):
        raise gr.Error("Error: Please generate a base video in Step 1 before refining.")
    try:
        logging.info(f"[UI] Requesting LTX refinement for latents: {state.get('low_res_latents')}")
        video_path, tensor_path = ltx_aduc_pipeline.generate_upscale_denoise(
            latents_path=state["low_res_latents"],
            prompt=prompt, negative_prompt=neg_prompt,
            seed=state["used_seed"]
        )
        state["refined_video_ltx"] = video_path
        state["refined_latents_ltx"] = tensor_path
        logging.info(f"[UI] LTX refinement successful. Path: {video_path}")
        return video_path, state
    except Exception as e:
        error_message = f"❌ An error occurred during LTX Refinement:\n{e}"
        logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
        raise gr.Error(error_message)


@log_function_io
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
    """Wrapper para o upscale de resolução SeedVR."""
    if not state or not state.get("low_res_video"):
        raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
    if not seed_aduc_pipeline:
        raise gr.Error("Error: The SeedVR upscaling server is not available.")
    try:
        logging.info(f"[UI] Requesting SeedVR upscaling for video: {state.get('low_res_video')}")
        def progress_wrapper(p, desc=""): progress(p, desc=desc)
        output_filepath = seed_aduc_pipeline.run_inference(
            file_path=state["low_res_video"], seed=int(seed), resolution=int(resolution),
            batch_size=int(batch_size), fps=float(fps), progress=progress_wrapper
        )
        status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
        logging.info(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
        return gr.update(value=output_filepath), gr.update(value=status_message)
    except Exception as e:
        error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}"
        logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
        return None, gr.update(value=error_message)

# ==============================================================================
# --- CONSTRUÇÃO DA INTERFACE GRADIO ---
# ==============================================================================

def build_ui():
    """Constrói a interface completa do Gradio."""
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
        app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None})
        ui_components = {}
        gr.Markdown("🚀 ADUC-SDR Video Suite - Infinite LTX & SeedVR Workflow", elem_id="main-title")
        with gr.Row():
            with gr.Column(scale=1): _build_generation_controls(ui_components)
            with gr.Column(scale=1):
                gr.Markdown("### Etapa 1: Vídeo Base Gerado")
                ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=True)
                ui_components['used_seed_display'] = gr.Textbox(label="Seed Utilizada", visible=False, interactive=False)
        _build_postprod_controls(ui_components)
        _register_event_handlers(app_state, ui_components)
    return demo

def _build_generation_controls(ui: dict):
    """Constrói os componentes da UI, sem seleção de modo."""
    gr.Markdown("### Configurações de Geração")
    ui['prompt'] = gr.Textbox(label="Prompt(s)", info="Para múltiplas cenas escreva um linha por prompt.", value="", lines=6)
    ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", visible=False, value="blurry, low quality, bad anatomy, deformed", lines=2)
    ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="pil", sources=["upload"])
    
    with gr.Accordion("Parâmetros Principais", open=True):
        ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
        with gr.Row():
            ui['height'] = gr.Slider(label="Height", value=432, step=128, minimum=256, maximum=1024)
            ui['width'] = gr.Slider(label="Width", value=768, step=128, minimum=256, maximum=1024)

    with gr.Accordion("Opções Avançadas LTX", open=False):
        gr.Markdown("#### Configurações de Passos de Inferência")
        gr.Markdown("*Deixe o valor padrão (ex: 20) ou 0 para usar a configuração do `config.yaml`.*")
        ui['fp_num_inference_steps'] = gr.Slider(label="Número de Passos", minimum=0, maximum=100, step=1, value=20, info="Padrão LTX: 20.")
        ui['fp_skip_initial_steps'] = gr.Slider(label="Pular Passos Iniciais", minimum=0, maximum=100, step=1, value=0)
        ui['fp_skip_final_steps'] = gr.Slider(label="Pular Passos Finais", minimum=0, maximum=100, step=1, value=0)
    
    ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary")

def _build_postprod_controls(ui: dict):
    """Constrói os componentes da UI para a Etapa 2: Pós-Produção."""
    with gr.Group(visible=False) as ui['post_prod_group']:
        gr.Markdown("--- \n## Etapa 2: Pós-Produção")
        with gr.Tabs():
            with gr.TabItem("🚀 Upscaler de Textura (LTX)"):
                with gr.Row():
                    with gr.Column(scale=1):
                         gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.")
                         ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary")
                    with gr.Column(scale=1):
                        ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False)
            
            with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
                is_seedvr_available = seed_aduc_pipeline is not None
                if not is_seedvr_available:
                    gr.Markdown("🔴 **AVISO: O serviço SeedVR não está disponível.**")
                with gr.Row():
                    with gr.Column(scale=1):
                        ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
                        ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=2160, value=1080, step=8, label="Resolução Vertical Alvo")
                        ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
                        ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0)
                        ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available)
                    with gr.Column(scale=1):
                        ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
                        ui['seedvr_status_box'] = gr.Textbox(label="Status do SeedVR", value="Aguardando...", lines=3, interactive=False)

def _register_event_handlers(app_state: gr.State, ui: dict):
    """Registra todos os manipuladores de eventos do Gradio."""
    def update_seed_display(state):
        return state.get("used_seed", "N/A")

    gen_inputs = [
        ui['prompt'], ui['neg_prompt'], ui['start_image'],
        ui['height'], ui['width'], ui['duration'],
        ui['fp_num_inference_steps'], ui['fp_skip_initial_steps'], ui['fp_skip_final_steps'],
    ]
    gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
    
    (ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs)
     .then(fn=update_seed_display, inputs=[app_state], outputs=[ui['used_seed_display']]))

    refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']]
    refine_outputs = [ui['ltx_refined_video_output'], app_state]
    ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs)
    
    if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
        seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
        seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']]
        ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs)

# ==============================================================================
# --- PONTO DE ENTRADA DA APLICAÇÃO ---
# ==============================================================================

if __name__ == "__main__":
    demo = build_ui()
    demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)