Spaces:
Paused
Paused
File size: 12,110 Bytes
386d75b fcf054d e5a215d fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b e5567b6 7dbc149 e5567b6 386d75b e5567b6 97ccd2a fcf054d e5567b6 ac7ea2f e448cfe ac7ea2f e5567b6 386d75b e5567b6 386d75b fcf054d 386d75b fcf054d 386d75b b743563 386d75b b743563 386d75b b743563 386d75b b743563 386d75b b743563 fcf054d b743563 386d75b b743563 386d75b b743563 386d75b b743563 386d75b b743563 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b fcf054d 386d75b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import gradio as gr
import torch
import numpy as np
import tempfile
import os
import yaml
import json
from pathlib import Path
import random
# Importações de Hugging Face
from huggingface_hub import snapshot_download, HfFolder
from transformers import T5EncoderModel, T5TokenizerFast
from diffusers import LTXLatentUpsamplePipeline
from diffusers.models import AutoencoderKLLTXVideo, LTXVideoTransformer3DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
# Nossa pipeline customizada e utilitários
from pipeline_ltx_condition_control import LTXConditionPipeline, LTXVideoCondition
from diffusers.utils import export_to_video
from PIL import Image, ImageOps
import imageio
# --- Configuração de Logging e Avisos ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning) # Correto: UserWarning é uma classe
warnings.filterwarnings("ignore", category=FutureWarning) # Correto: FutureWarning é uma classe
warnings.filterwarnings("ignore", message=".*")
# --- CARREGAMENTO DIRETO DOS MODELOS (SEM CLASSE) ---
print("=== [Inicialização da Aplicação] ===")
# 1. Carregar Configuração do Arquivo YAML
CONFIG_PATH = Path("ltxv-13b-0.9.8-distilled.yaml")
if not CONFIG_PATH.exists():
raise FileNotFoundError(f"Arquivo de configuração '{CONFIG_PATH}' não encontrado.")
with open(CONFIG_PATH, "r") as f:
config = yaml.safe_load(f)
print(f"Configuração carregada de: {CONFIG_PATH}")
print(json.dumps(config, indent=2))
# Parâmetros Globais
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16
base_repo="Lightricks/LTX-Video"
checkpoint_path="ltxv-13b-0.9.8-distilled.safetensors"
upscaler_repo="Lightricks/ltxv-spatial-upscaler-0.9.7"
FPS = 24
# 2. Baixar os arquivos do modelo base
print(f"=== Baixando snapshot do repositório base: {base_repo} ===")
local_repo_path = snapshot_download(
repo_id=base_repo,
token=os.getenv("HF_TOKEN") or HfFolder.get_token(),
resume_download=True
)
# 3. Carregar cada componente da pipeline explicitamente
print("=== Carregando componentes da pipeline... ===")
vae = AutoencoderKLLTXVideo.from_pretrained(local_repo_path, subfolder="vae", torch_dtype=torch_dtype)
text_encoder = T5EncoderModel.from_pretrained(local_repo_path, subfolder="text_encoder", torch_dtype=torch_dtype)
tokenizer = T5TokenizerFast.from_pretrained(local_repo_path, subfolder="tokenizer")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(local_repo_path, subfolder="scheduler")
# Correção para o erro 'mu': desativar explicitamente o dynamic shifting
if hasattr(scheduler.config, 'use_dynamic_shifting') and scheduler.config.use_dynamic_shifting:
print("[Config] Desativando 'use_dynamic_shifting' no scheduler.")
scheduler.config.use_dynamic_shifting = False
print(f"Carregando pesos do Transformer de: {checkpoint_path}")
transformer = LTXVideoTransformer3DModel.from_pretrained(
local_repo_path, subfolder="transformer", weight_name=checkpoint_path, torch_dtype=torch_dtype
)
# 4. Montar a pipeline principal
print("Montando a LTXConditionPipeline...")
pipeline = LTXConditionPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
scheduler=scheduler, transformer=transformer
)
pipeline.to(device)
pipeline.vae.enable_tiling()
# 5. Carregar a pipeline de upscale
print(f"Carregando o upsampler espacial de: {upscaler_repo}")
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained(
upscaler_repo, vae=vae, torch_dtype=torch_dtype
)
pipe_upsample.to(device)
print("=== [Inicialização Concluída] Aplicação pronta. ===")
# --- Lógica Principal da Geração de Vídeo ---
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
height = height - (height % vae_temporal_compression_ratio)
width = width - (width % vae_temporal_compression_ratio)
return height, width
def prepare_and_generate_video(
condition_image_1, condition_strength_1, condition_frame_index_1,
condition_image_2, condition_strength_2, condition_frame_index_2,
prompt, duration, negative_prompt,
height, width, guidance_scale, seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)
):
try:
# Lógica para agrupar as condições *dentro* da função
# Cálculo de frames e resolução
num_frames = int(duration * FPS) + 1
temporal_compression = pipeline.vae_temporal_compression_ratio
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
downscale_factor = 2 / 3
downscaled_height = int(height * downscale_factor)
downscaled_width = int(width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
)
conditions = []
if condition_image_1 is not None:
condition_image_1 = ImageOps.fit(condition_image_1, (downscaled_width, downscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_1,
strength=condition_strength_1,
frame_index=int(condition_frame_index_1)
))
if condition_image_2 is not None:
condition_image_2 = ImageOps.fit(condition_image_2, (downscaled_width, downscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_2,
strength=condition_strength_2,
frame_index=int(condition_frame_index_2)
))
pipeline_args = {}
if conditions:
pipeline_args["conditions"] = conditions
# Manipulação da seed
if randomize_seed:
seed = random.randint(0, 2**32 - 1)
# ETAPA 1: Geração do vídeo em baixa resolução
latents = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
generator=torch.Generator().manual_seed(seed),
output_type="latent",
**pipeline_args
).frames
# ETAPA 2: Upscale dos latentes
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
conditions = []
if condition_image_1 is not None:
condition_image_1 = ImageOps.fit(condition_image_1, (upscaled_width, upscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_1,
strength=condition_strength_1,
frame_index=int(condition_frame_index_1)
))
if condition_image_2 is not None:
condition_image_2 = ImageOps.fit(condition_image_2, (upscaled_width, upscaled_height), Image.LANCZOS)
conditions.append(LTXVideoCondition(
image=condition_image_2,
strength=condition_strength_2,
frame_index=int(condition_frame_index_2)
))
pipeline_args = {}
if conditions:
pipeline_args["conditions"] = conditions
# ETAPA 3: Denoise final em alta resolução
final_video_frames_np = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=upscaled_width,
height=upscaled_height,
num_frames=num_frames,
denoise_strength=0.999,
timesteps=[1000, 909, 725, 421, 0],
latents=upscaled_latents,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.0,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
generator=torch.Generator(device="cuda").manual_seed(seed),
output_type="np",
**pipeline_args
).frames[0]
# Exportação para arquivo MP4
video_uint8_frames = [(frame * 255).astype(np.uint8) for frame in final_video_frames_np]
output_filename = "output.mp4"
with imageio.get_writer(output_filename, fps=FPS, quality=8, macro_block_size=1) as writer:
for frame_idx, frame_data in enumerate(video_uint8_frames):
progress((frame_idx + 1) / len(video_uint8_frames), desc="Codificando frames do vídeo...")
writer.append_data(frame_data)
return output_filename, seed
except Exception as e:
print(f"Ocorreu um erro: {e}")
return None, seed
# --- Interface Gráfica com Gradio ---
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"]), delete_cache=(60, 900)) as demo:
gr.Markdown("# Geração de Vídeo com LTX\n**Crie vídeos a partir de texto e imagens de condição.**")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", placeholder="Descreva o vídeo que você quer gerar...", lines=3, value="O Coringa dançando em um quarto escuro, iluminação dramática.")
with gr.Accordion("Imagem de Condição 1", open=True):
condition_image_1 = gr.Image(label="Imagem 1", type="pil")
with gr.Row():
condition_strength_1 = gr.Slider(label="Peso", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_1 = gr.Number(label="Frame", value=0, precision=0)
with gr.Accordion("Imagem de Condição 2", open=False):
condition_image_2 = gr.Image(label="Imagem 2", type="pil")
with gr.Row():
condition_strength_2 = gr.Slider(label="Peso", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_2 = gr.Number(label="Frame", value=0, precision=0)
duration = gr.Slider(label="Duração (s)", minimum=1.0, maximum=10.0, step=0.5, value=2)
with gr.Accordion("Configurações Avançadas", open=False):
negative_prompt = gr.Textbox(label="Prompt Negativo", lines=2, value="pior qualidade, embaçado, tremido, distorcido")
with gr.Row():
height = gr.Slider(label="Altura", minimum=256, maximum=1536, step=32, value=768)
width = gr.Slider(label="Largura", minimum=256, maximum=1536, step=32, value=1152)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance", minimum=1.0, maximum=5.0, step=0.1, value=1.0)
randomize_seed = gr.Checkbox(label="Seed Aleatória", value=True)
seed = gr.Number(label="Seed", value=0, precision=0)
generate_btn = gr.Button("Gerar Vídeo", variant="primary", size="lg")
with gr.Column(scale=1):
output_video = gr.Video(label="Vídeo Gerado", height=400)
generated_seed = gr.Number(label="Seed Utilizada", interactive=False)
generate_btn.click(
fn=prepare_and_generate_video,
inputs=[
condition_image_1, condition_strength_1, condition_frame_index_1,
condition_image_2, condition_strength_2, condition_frame_index_2,
prompt, duration, negative_prompt,
height, width, guidance_scale, seed, randomize_seed,
],
outputs=[output_video, generated_seed]
)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True) |