Test / api /ltx /ltx_aduc_manager.py
eeuuia's picture
Update api/ltx/ltx_aduc_manager.py
8534d97 verified
raw
history blame
9.33 kB
# FILE: api/ltx/ltx_aduc_manager.py
# DESCRIPTION: A singleton pool manager for the LTX-Video pipeline.
# This module is the "secret weapon": it handles loading, device placement,
# and applies a runtime monkey patch to the LTX pipeline for full control
# and compatibility with the ADUC-SDR architecture, especially for latent conditioning.
import time
import os
import yaml
import json
from pathlib import Path
from typing import List, Optional, Tuple, Union, Dict
from dataclasses import dataclass
import threading
import sys
from pathlib import Path
import torch
from diffusers.utils.torch_utils import randn_tensor
from huggingface_hub import hf_hub_download
# --- Importações da nossa arquitetura ---
from managers.gpu_manager import gpu_manager
from api.ltx.ltx_utils import build_ltx_pipeline_on_cpu
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
LTX_REPO_ID = "Lightricks/LTX-Video"
CACHE_DIR = os.environ.get("HF_HOME")
# --- Importações da biblioteca LTX-Video ---
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
from ltx_video.models.autoencoders.vae_encode import vae_encode, latent_to_pixel_coords
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()
# ==============================================================================
# --- DEFINIÇÃO DOS DATACLASSES DE CONDICIONAMENTO ADUC-SDR ---
# ==============================================================================
@dataclass
class ConditioningItem:
"""Nosso Data Class para condicionamento com TENSORES DE PIXEL (de imagens)."""
pixel_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
@dataclass
class LatentConditioningItem:
"""Nossa "arma secreta": um Data Class para condicionamento com TENSORES LATENTES (de overlap)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
# ==============================================================================
# --- O MONKEY PATCH ---
# Nossa versão customizada de `prepare_conditioning` que entende ambos os Data Classes.
# ==============================================================================
def _aduc_prepare_conditioning_patch(
self: "LTXVideoPipeline",
conditioning_items: Optional[List[Union[ConditioningItem, LatentConditioningItem]]],
init_latents: torch.Tensor,
num_frames: int, height: int, width: int, # Assinatura mantida para compatibilidade
vae_per_channel_normalize: bool = False,
generator=None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
if not conditioning_items:
latents, latent_coords = self.patchifier.patchify(latents=init_latents)
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
return latents, pixel_coords, None, 0
init_conditioning_mask = torch.zeros_like(init_latents[:, 0, ...], dtype=torch.float32, device=init_latents.device)
extra_conditioning_latents, extra_conditioning_pixel_coords, extra_conditioning_mask = [], [], []
extra_conditioning_num_latents = 0
for item in conditioning_items:
strength = item.conditioning_strength
media_frame_number = item.media_frame_number
if isinstance(item, ConditioningItem):
logging.debug("Patch ADUC: Processando ConditioningItem (pixels).")
pixel_tensor_on_vae_device = item.pixel_tensor.to(device=self.vae.device, dtype=self.vae.dtype)
media_item_latents = vae_encode(pixel_tensor_on_vae_device, self.vae, vae_per_channel_normalize=vae_per_channel_normalize)
media_item_latents = media_item_latents.to(device=init_latents.device, dtype=init_latents.dtype)
elif isinstance(item, LatentConditioningItem):
logging.debug("Patch ADUC: Processando LatentConditioningItem (latentes).")
media_item_latents = item.latent_tensor.to(device=init_latents.device, dtype=init_latents.dtype)
else:
logging.warning(f"Patch ADUC: Item de condicionamento de tipo desconhecido '{type(item)}' será ignorado.")
continue
if media_frame_number == 0:
f_l, h_l, w_l = media_item_latents.shape[-3:]
init_latents[..., :f_l, :h_l, :w_l] = torch.lerp(init_latents[..., :f_l, :h_l, :w_l], media_item_latents, strength)
init_conditioning_mask[..., :f_l, :h_l, :w_l] = strength
else:
noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype)
media_item_latents = torch.lerp(noise, media_item_latents, strength)
patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents)
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
pixel_coords[:, 0] += media_frame_number
extra_conditioning_num_latents += patched_latents.shape[1]
new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device)
extra_conditioning_latents.append(patched_latents)
extra_conditioning_pixel_coords.append(pixel_coords)
extra_conditioning_mask.append(new_mask)
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1))
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
if extra_conditioning_latents:
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2)
init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1)
return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents
# ==============================================================================
# --- LTX WORKER E POOL MANAGER ---
# ==============================================================================
class LTXWorker:
"""Gerencia uma instância do LTX Pipeline em um par de GPUs (main + vae)."""
def __init__(self, main_device_str: str, vae_device_str: str, config: dict):
self.main_device = torch.device(main_device_str)
self.vae_device = torch.device(vae_device_str)
self.config = config
self.pipeline: LTXVideoPipeline = None
self._load_and_patch_pipeline()
def _load_and_patch_pipeline(self):
logging.info(f"[LTXWorker-{self.main_device}] Carregando pipeline LTX para a CPU...")
self.pipeline, _ = build_ltx_pipeline_on_cpu(self.config)
logging.info(f"[LTXWorker-{self.main_device}] Movendo pipeline para GPUs (Main: {self.main_device}, VAE: {self.vae_device})...")
self.pipeline.to(self.main_device)
self.pipeline.vae.to(self.vae_device)
logging.info(f"[LTXWorker-{self.main_device}] Aplicando patch ADUC-SDR na função 'prepare_conditioning'...")
self.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(self.pipeline, LTXVideoPipeline)
logging.info(f"[LTXWorker-{self.main_device}] ✅ Pipeline 'quente', corrigido e pronto para uso.")
class LtxAducManager:
_instance = None
_lock = threading.Lock()
def __new__(cls, *args, **kwargs):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized: return
with self._lock:
if self._initialized: return
logging.info("⚙️ Inicializando LTXPoolManager Singleton...")
self.config = self._load_config()
main_device_str = str(gpu_manager.get_ltx_device())
vae_device_str = str(gpu_manager.get_ltx_vae_device())
self.worker = LTXWorker(main_device_str, vae_device_str, self.config)
self._initialized = True
logging.info("✅ LTXPoolManager pronto.")
def _load_config(self) -> Dict:
"""Carrega a configuração YAML principal do LTX."""
config_path = Path("/data/LTX-Video/configs/ltxv-13b-0.9.8-distilled-fp8.yaml")
with open(config_path, "r") as file:
return yaml.safe_load(file)
def get_pipeline(self) -> LTXVideoPipeline:
"""Retorna a instância do pipeline, já carregada e corrigida."""
return self.worker.pipeline
# --- Instância Singleton Global ---
ltx_aduc_manager = LtxAducManager()