Spaces:
Paused
Paused
File size: 9,331 Bytes
5105909 b521010 42998d3 8534d97 460fa35 9a6b3d7 b521010 6c5d136 b521010 bb4dfa4 b521010 9a6b3d7 52c58b6 b521010 b3b14bc b521010 8504d9f bb4dfa4 b521010 a7e6912 42998d3 eefd283 42998d3 b521010 42998d3 b521010 9a6b3d7 b521010 9a6b3d7 b521010 42998d3 b521010 42998d3 b521010 a7e6912 460fa35 b521010 42998d3 460fa35 b521010 42998d3 460fa35 b521010 a7e6912 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# FILE: api/ltx/ltx_aduc_manager.py
# DESCRIPTION: A singleton pool manager for the LTX-Video pipeline.
# This module is the "secret weapon": it handles loading, device placement,
# and applies a runtime monkey patch to the LTX pipeline for full control
# and compatibility with the ADUC-SDR architecture, especially for latent conditioning.
import time
import os
import yaml
import json
from pathlib import Path
from typing import List, Optional, Tuple, Union, Dict
from dataclasses import dataclass
import threading
import sys
from pathlib import Path
import torch
from diffusers.utils.torch_utils import randn_tensor
from huggingface_hub import hf_hub_download
# --- Importações da nossa arquitetura ---
from managers.gpu_manager import gpu_manager
from api.ltx.ltx_utils import build_ltx_pipeline_on_cpu
LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
LTX_REPO_ID = "Lightricks/LTX-Video"
CACHE_DIR = os.environ.get("HF_HOME")
# --- Importações da biblioteca LTX-Video ---
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
from ltx_video.models.autoencoders.vae_encode import vae_encode, latent_to_pixel_coords
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()
# ==============================================================================
# --- DEFINIÇÃO DOS DATACLASSES DE CONDICIONAMENTO ADUC-SDR ---
# ==============================================================================
@dataclass
class ConditioningItem:
"""Nosso Data Class para condicionamento com TENSORES DE PIXEL (de imagens)."""
pixel_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
@dataclass
class LatentConditioningItem:
"""Nossa "arma secreta": um Data Class para condicionamento com TENSORES LATENTES (de overlap)."""
latent_tensor: torch.Tensor
media_frame_number: int
conditioning_strength: float
# ==============================================================================
# --- O MONKEY PATCH ---
# Nossa versão customizada de `prepare_conditioning` que entende ambos os Data Classes.
# ==============================================================================
def _aduc_prepare_conditioning_patch(
self: "LTXVideoPipeline",
conditioning_items: Optional[List[Union[ConditioningItem, LatentConditioningItem]]],
init_latents: torch.Tensor,
num_frames: int, height: int, width: int, # Assinatura mantida para compatibilidade
vae_per_channel_normalize: bool = False,
generator=None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
if not conditioning_items:
latents, latent_coords = self.patchifier.patchify(latents=init_latents)
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
return latents, pixel_coords, None, 0
init_conditioning_mask = torch.zeros_like(init_latents[:, 0, ...], dtype=torch.float32, device=init_latents.device)
extra_conditioning_latents, extra_conditioning_pixel_coords, extra_conditioning_mask = [], [], []
extra_conditioning_num_latents = 0
for item in conditioning_items:
strength = item.conditioning_strength
media_frame_number = item.media_frame_number
if isinstance(item, ConditioningItem):
logging.debug("Patch ADUC: Processando ConditioningItem (pixels).")
pixel_tensor_on_vae_device = item.pixel_tensor.to(device=self.vae.device, dtype=self.vae.dtype)
media_item_latents = vae_encode(pixel_tensor_on_vae_device, self.vae, vae_per_channel_normalize=vae_per_channel_normalize)
media_item_latents = media_item_latents.to(device=init_latents.device, dtype=init_latents.dtype)
elif isinstance(item, LatentConditioningItem):
logging.debug("Patch ADUC: Processando LatentConditioningItem (latentes).")
media_item_latents = item.latent_tensor.to(device=init_latents.device, dtype=init_latents.dtype)
else:
logging.warning(f"Patch ADUC: Item de condicionamento de tipo desconhecido '{type(item)}' será ignorado.")
continue
if media_frame_number == 0:
f_l, h_l, w_l = media_item_latents.shape[-3:]
init_latents[..., :f_l, :h_l, :w_l] = torch.lerp(init_latents[..., :f_l, :h_l, :w_l], media_item_latents, strength)
init_conditioning_mask[..., :f_l, :h_l, :w_l] = strength
else:
noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype)
media_item_latents = torch.lerp(noise, media_item_latents, strength)
patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents)
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
pixel_coords[:, 0] += media_frame_number
extra_conditioning_num_latents += patched_latents.shape[1]
new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device)
extra_conditioning_latents.append(patched_latents)
extra_conditioning_pixel_coords.append(pixel_coords)
extra_conditioning_mask.append(new_mask)
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1))
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
if extra_conditioning_latents:
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2)
init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1)
return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents
# ==============================================================================
# --- LTX WORKER E POOL MANAGER ---
# ==============================================================================
class LTXWorker:
"""Gerencia uma instância do LTX Pipeline em um par de GPUs (main + vae)."""
def __init__(self, main_device_str: str, vae_device_str: str, config: dict):
self.main_device = torch.device(main_device_str)
self.vae_device = torch.device(vae_device_str)
self.config = config
self.pipeline: LTXVideoPipeline = None
self._load_and_patch_pipeline()
def _load_and_patch_pipeline(self):
logging.info(f"[LTXWorker-{self.main_device}] Carregando pipeline LTX para a CPU...")
self.pipeline, _ = build_ltx_pipeline_on_cpu(self.config)
logging.info(f"[LTXWorker-{self.main_device}] Movendo pipeline para GPUs (Main: {self.main_device}, VAE: {self.vae_device})...")
self.pipeline.to(self.main_device)
self.pipeline.vae.to(self.vae_device)
logging.info(f"[LTXWorker-{self.main_device}] Aplicando patch ADUC-SDR na função 'prepare_conditioning'...")
self.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(self.pipeline, LTXVideoPipeline)
logging.info(f"[LTXWorker-{self.main_device}] ✅ Pipeline 'quente', corrigido e pronto para uso.")
class LtxAducManager:
_instance = None
_lock = threading.Lock()
def __new__(cls, *args, **kwargs):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized: return
with self._lock:
if self._initialized: return
logging.info("⚙️ Inicializando LTXPoolManager Singleton...")
self.config = self._load_config()
main_device_str = str(gpu_manager.get_ltx_device())
vae_device_str = str(gpu_manager.get_ltx_vae_device())
self.worker = LTXWorker(main_device_str, vae_device_str, self.config)
self._initialized = True
logging.info("✅ LTXPoolManager pronto.")
def _load_config(self) -> Dict:
"""Carrega a configuração YAML principal do LTX."""
config_path = Path("/data/LTX-Video/configs/ltxv-13b-0.9.8-distilled-fp8.yaml")
with open(config_path, "r") as file:
return yaml.safe_load(file)
def get_pipeline(self) -> LTXVideoPipeline:
"""Retorna a instância do pipeline, já carregada e corrigida."""
return self.worker.pipeline
# --- Instância Singleton Global ---
ltx_aduc_manager = LtxAducManager()
|