File size: 9,331 Bytes
5105909
b521010
 
 
 
42998d3
8534d97
460fa35
9a6b3d7
b521010
 
 
6c5d136
b521010
 
bb4dfa4
 
b521010
 
9a6b3d7
52c58b6
b521010
b3b14bc
b521010
8504d9f
bb4dfa4
 
 
 
b521010
a7e6912
 
 
 
 
42998d3
eefd283
 
 
 
 
 
 
 
 
 
 
42998d3
b521010
42998d3
 
b521010
 
 
 
 
 
 
 
 
 
 
 
 
9a6b3d7
 
b521010
 
9a6b3d7
 
b521010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42998d3
 
b521010
42998d3
b521010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e6912
460fa35
b521010
42998d3
460fa35
b521010
 
 
 
 
42998d3
460fa35
 
b521010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e6912
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# FILE: api/ltx/ltx_aduc_manager.py
# DESCRIPTION: A singleton pool manager for the LTX-Video pipeline.
# This module is the "secret weapon": it handles loading, device placement,
# and applies a runtime monkey patch to the LTX pipeline for full control
# and compatibility with the ADUC-SDR architecture, especially for latent conditioning.


import time
import os
import yaml
import json
from pathlib import Path
from typing import List, Optional, Tuple, Union, Dict
from dataclasses import dataclass
import threading
import sys
from pathlib import Path
import torch
from diffusers.utils.torch_utils import randn_tensor
from huggingface_hub import hf_hub_download

# --- Importações da nossa arquitetura ---
from managers.gpu_manager import gpu_manager
from api.ltx.ltx_utils import build_ltx_pipeline_on_cpu

LTX_VIDEO_REPO_DIR = Path("/data/LTX-Video")
LTX_REPO_ID = "Lightricks/LTX-Video"
CACHE_DIR = os.environ.get("HF_HOME")

# --- Importações da biblioteca LTX-Video ---
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
   sys.path.insert(0, repo_path)
   from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline
   from ltx_video.models.autoencoders.vae_encode import vae_encode, latent_to_pixel_coords


import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()

# ==============================================================================
# --- DEFINIÇÃO DOS DATACLASSES DE CONDICIONAMENTO ADUC-SDR ---
# ==============================================================================

@dataclass
class ConditioningItem:
    """Nosso Data Class para condicionamento com TENSORES DE PIXEL (de imagens)."""
    pixel_tensor: torch.Tensor
    media_frame_number: int
    conditioning_strength: float

@dataclass
class LatentConditioningItem:
    """Nossa "arma secreta": um Data Class para condicionamento com TENSORES LATENTES (de overlap)."""
    latent_tensor: torch.Tensor
    media_frame_number: int
    conditioning_strength: float

# ==============================================================================
# --- O MONKEY PATCH ---
# Nossa versão customizada de `prepare_conditioning` que entende ambos os Data Classes.
# ==============================================================================

def _aduc_prepare_conditioning_patch(
    self: "LTXVideoPipeline",
    conditioning_items: Optional[List[Union[ConditioningItem, LatentConditioningItem]]],
    init_latents: torch.Tensor,
    num_frames: int, height: int, width: int, # Assinatura mantida para compatibilidade
    vae_per_channel_normalize: bool = False,
    generator=None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
    
    if not conditioning_items:
        latents, latent_coords = self.patchifier.patchify(latents=init_latents)
        pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
        return latents, pixel_coords, None, 0
    
    init_conditioning_mask = torch.zeros_like(init_latents[:, 0, ...], dtype=torch.float32, device=init_latents.device)
    extra_conditioning_latents, extra_conditioning_pixel_coords, extra_conditioning_mask = [], [], []
    extra_conditioning_num_latents = 0
    
    for item in conditioning_items:
        strength = item.conditioning_strength
        media_frame_number = item.media_frame_number
        
        if isinstance(item, ConditioningItem):
            logging.debug("Patch ADUC: Processando ConditioningItem (pixels).")
            pixel_tensor_on_vae_device = item.pixel_tensor.to(device=self.vae.device, dtype=self.vae.dtype)
            media_item_latents = vae_encode(pixel_tensor_on_vae_device, self.vae, vae_per_channel_normalize=vae_per_channel_normalize)
            media_item_latents = media_item_latents.to(device=init_latents.device, dtype=init_latents.dtype)
        elif isinstance(item, LatentConditioningItem):
            logging.debug("Patch ADUC: Processando LatentConditioningItem (latentes).")
            media_item_latents = item.latent_tensor.to(device=init_latents.device, dtype=init_latents.dtype)
        else:
            logging.warning(f"Patch ADUC: Item de condicionamento de tipo desconhecido '{type(item)}' será ignorado.")
            continue
        
        if media_frame_number == 0:
            f_l, h_l, w_l = media_item_latents.shape[-3:]
            init_latents[..., :f_l, :h_l, :w_l] = torch.lerp(init_latents[..., :f_l, :h_l, :w_l], media_item_latents, strength)
            init_conditioning_mask[..., :f_l, :h_l, :w_l] = strength
        else:
            noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype)
            media_item_latents = torch.lerp(noise, media_item_latents, strength)
            patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents)
            pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
            pixel_coords[:, 0] += media_frame_number
            extra_conditioning_num_latents += patched_latents.shape[1]
            new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device)
            extra_conditioning_latents.append(patched_latents)
            extra_conditioning_pixel_coords.append(pixel_coords)
            extra_conditioning_mask.append(new_mask)

    init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
    init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
    init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1))
    init_conditioning_mask = init_conditioning_mask.squeeze(-1)
    
    if extra_conditioning_latents:
        init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
        init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2)
        init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1)
    
    return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents

# ==============================================================================
# --- LTX WORKER E POOL MANAGER ---
# ==============================================================================

class LTXWorker:
    """Gerencia uma instância do LTX Pipeline em um par de GPUs (main + vae)."""
    def __init__(self, main_device_str: str, vae_device_str: str, config: dict):
        self.main_device = torch.device(main_device_str)
        self.vae_device = torch.device(vae_device_str)
        self.config = config
        self.pipeline: LTXVideoPipeline = None
        self._load_and_patch_pipeline()

    def _load_and_patch_pipeline(self):
        logging.info(f"[LTXWorker-{self.main_device}] Carregando pipeline LTX para a CPU...")
        self.pipeline, _ = build_ltx_pipeline_on_cpu(self.config)
        logging.info(f"[LTXWorker-{self.main_device}] Movendo pipeline para GPUs (Main: {self.main_device}, VAE: {self.vae_device})...")
        self.pipeline.to(self.main_device)
        self.pipeline.vae.to(self.vae_device)
        logging.info(f"[LTXWorker-{self.main_device}] Aplicando patch ADUC-SDR na função 'prepare_conditioning'...")
        self.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(self.pipeline, LTXVideoPipeline)
        logging.info(f"[LTXWorker-{self.main_device}] ✅ Pipeline 'quente', corrigido e pronto para uso.")

class LtxAducManager:
    _instance = None
    _lock = threading.Lock()

    def __new__(cls, *args, **kwargs):
        with cls._lock:
            if cls._instance is None:
                cls._instance = super().__new__(cls)
                cls._instance._initialized = False
            return cls._instance

    def __init__(self):
        if self._initialized: return
        with self._lock:
            if self._initialized: return
            logging.info("⚙️ Inicializando LTXPoolManager Singleton...")
            self.config = self._load_config()
            main_device_str = str(gpu_manager.get_ltx_device())
            vae_device_str = str(gpu_manager.get_ltx_vae_device())
            self.worker = LTXWorker(main_device_str, vae_device_str, self.config)
            self._initialized = True
            logging.info("✅ LTXPoolManager pronto.")

    def _load_config(self) -> Dict:
        """Carrega a configuração YAML principal do LTX."""
        config_path = Path("/data/LTX-Video/configs/ltxv-13b-0.9.8-distilled-fp8.yaml")
        with open(config_path, "r") as file:
            return yaml.safe_load(file)

    def get_pipeline(self) -> LTXVideoPipeline:
        """Retorna a instância do pipeline, já carregada e corrigida."""
        return self.worker.pipeline

# --- Instância Singleton Global ---
ltx_aduc_manager = LtxAducManager()