Spaces:
Paused
Paused
| # FILE: api/ltx_server_refactored_complete.py | |
| # DESCRIPTION: Final orchestrator for LTX-Video generation. | |
| # Features path resolution for cached models, dedicated VAE device logic, | |
| # delegation to utility modules, and advanced debug logging. | |
| import gc | |
| import json | |
| import logging | |
| import os | |
| import shutil | |
| import sys | |
| import tempfile | |
| import time | |
| from pathlib import Path | |
| from typing import Dict, List, Optional, Tuple | |
| import random | |
| import torch | |
| import yaml | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download | |
| # ============================================================================== | |
| # --- SETUP E IMPORTAÇÕES DO PROJETO --- | |
| # ============================================================================== | |
| # Configuração de logging e supressão de warnings | |
| # (Pode ser removido se o logging for configurado globalmente) | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| logging.getLogger("huggingface_hub").setLevel(logging.ERROR) | |
| log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper() | |
| logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s') | |
| # --- Constantes de Configuração --- | |
| DEPS_DIR = Path("/data") | |
| LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" | |
| RESULTS_DIR = Path("/app/output") | |
| DEFAULT_FPS = 24.0 | |
| FRAMES_ALIGNMENT = 8 | |
| LTX_REPO_ID = "Lightricks/LTX-Video" # Repositório de onde os modelos são baixados | |
| # Garante que a biblioteca LTX-Video seja importável | |
| def add_deps_to_path(): | |
| repo_path = str(LTX_VIDEO_REPO_DIR.resolve()) | |
| if repo_path not in sys.path: | |
| sys.path.insert(0, repo_path) | |
| logging.info(f"[ltx_server] LTX-Video repository added to sys.path: {repo_path}") | |
| add_deps_to_path() | |
| # --- Módulos da nossa Arquitetura --- | |
| try: | |
| from api.gpu_manager import gpu_manager | |
| from managers.vae_manager import vae_manager_singleton | |
| from tools.video_encode_tool import video_encode_tool_singleton | |
| from api.ltx.ltx_utils import ( | |
| build_ltx_pipeline_on_cpu, | |
| seed_everything, | |
| load_image_to_tensor_with_resize_and_crop, | |
| ConditioningItem, | |
| ) | |
| from api.utils.debug_utils import log_function_io | |
| except ImportError as e: | |
| logging.critical(f"A crucial import from the local API/architecture failed. Error: {e}", exc_info=True) | |
| sys.exit(1) | |
| # ============================================================================== | |
| # --- FUNÇÕES AUXILIARES DO ORQUESTRADOR --- | |
| # ============================================================================== | |
| def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]: | |
| """Calculates symmetric padding required to meet target dimensions.""" | |
| pad_h = target_h - orig_h | |
| pad_w = target_w - orig_w | |
| pad_top = pad_h // 2 | |
| pad_bottom = pad_h - pad_top | |
| pad_left = pad_w // 2 | |
| pad_right = pad_w - pad_left | |
| return (pad_left, pad_right, pad_top, pad_bottom) | |
| # ============================================================================== | |
| # --- CLASSE DE SERVIÇO (O ORQUESTRADOR) --- | |
| # ============================================================================== | |
| class VideoService: | |
| """ | |
| Orchestrates the high-level logic of video generation, delegating low-level | |
| tasks to specialized managers and utility modules. | |
| """ | |
| def __init__(self): | |
| t0 = time.perf_counter() | |
| logging.info("Initializing VideoService Orchestrator...") | |
| RESULTS_DIR.mkdir(parents=True, exist_ok=True) | |
| target_main_device_str = str(gpu_manager.get_ltx_device()) | |
| target_vae_device_str = str(gpu_manager.get_ltx_vae_device()) | |
| logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'") | |
| self.config = self._load_config() | |
| self._resolve_model_paths_from_cache() # Etapa crítica para encontrar os modelos | |
| self.pipeline, self.latent_upsampler = build_ltx_pipeline_on_cpu(self.config) | |
| self.main_device = torch.device("cpu") | |
| self.vae_device = torch.device("cpu") | |
| self.move_to_device(main_device_str=target_main_device_str, vae_device_str=target_vae_device_str) | |
| self._apply_precision_policy() | |
| vae_manager_singleton.attach_pipeline(self.pipeline, device=self.vae_device, autocast_dtype=self.runtime_autocast_dtype) | |
| logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s") | |
| def _load_config(self) -> Dict: | |
| """Loads the YAML configuration file.""" | |
| config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml" | |
| logging.info(f"Loading config from: {config_path}") | |
| with open(config_path, "r") as file: | |
| return yaml.safe_load(file) | |
| def _resolve_model_paths_from_cache(self): | |
| """ | |
| Uses hf_hub_download to find the absolute paths to model files in the cache, | |
| updating the in-memory config. This makes the app resilient to cache structure. | |
| """ | |
| logging.info("Resolving model paths from Hugging Face cache...") | |
| cache_dir = os.environ.get("HF_HOME") | |
| try: | |
| # Resolve o caminho do checkpoint principal | |
| main_ckpt_filename = self.config["checkpoint_path"] | |
| main_ckpt_path = hf_hub_download( | |
| repo_id=LTX_REPO_ID, | |
| filename=main_ckpt_filename, | |
| cache_dir=cache_dir | |
| ) | |
| self.config["checkpoint_path"] = main_ckpt_path | |
| logging.info(f" -> Main checkpoint resolved to: {main_ckpt_path}") | |
| # Resolve o caminho do upsampler, se existir | |
| if self.config.get("spatial_upscaler_model_path"): | |
| upscaler_filename = self.config["spatial_upscaler_model_path"] | |
| upscaler_path = hf_hub_download( | |
| repo_id=LTX_REPO_ID, | |
| filename=upscaler_filename, | |
| cache_dir=cache_dir | |
| ) | |
| self.config["spatial_upscaler_model_path"] = upscaler_path | |
| logging.info(f" -> Spatial upscaler resolved to: {upscaler_path}") | |
| except Exception as e: | |
| logging.critical(f"Failed to resolve model paths. Ensure setup.py ran correctly. Error: {e}", exc_info=True) | |
| sys.exit(1) | |
| def move_to_device(self, main_device_str: str, vae_device_str: str): | |
| """Moves pipeline components to their designated target devices.""" | |
| target_main_device = torch.device(main_device_str) | |
| target_vae_device = torch.device(vae_device_str) | |
| logging.info(f"Moving LTX models -> Main Pipeline: {target_main_device}, VAE: {target_vae_device}") | |
| self.main_device = target_main_device | |
| self.pipeline.to(self.main_device) | |
| self.vae_device = target_vae_device | |
| self.pipeline.vae.to(self.vae_device) | |
| if self.latent_upsampler: self.latent_upsampler.to(self.main_device) | |
| logging.info("LTX models successfully moved to target devices.") | |
| def move_to_cpu(self): | |
| """Moves all LTX components to CPU to free VRAM for other services.""" | |
| self.move_to_device(main_device_str="cpu", vae_device_str="cpu") | |
| if torch.cuda.is_available(): torch.cuda.empty_cache() | |
| def finalize(self): | |
| """Cleans up GPU memory after a generation task.""" | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| try: torch.cuda.ipc_collect(); | |
| except Exception: pass | |
| # ========================================================================== | |
| # --- LÓGICA DE NEGÓCIO: ORQUESTRADORES PÚBLICOS --- | |
| # ========================================================================== | |
| def generate_narrative_low(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]: | |
| """Orchestrates the generation of a video from a multi-line prompt (sequence of scenes).""" | |
| logging.info("Starting narrative low-res generation...") | |
| used_seed = self._resolve_seed(kwargs.get("seed")) | |
| seed_everything(used_seed) | |
| prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()] | |
| if not prompt_list: raise ValueError("Prompt is empty or contains no valid lines.") | |
| num_chunks = len(prompt_list) | |
| total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0)) | |
| frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT | |
| overlap_frames = self.config.get("overlap_frames", 8) | |
| temp_latent_paths = [] | |
| overlap_condition_item = None | |
| try: | |
| for i, chunk_prompt in enumerate(prompt_list): | |
| logging.info(f"Generating narrative chunk {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'") | |
| current_frames = frames_per_chunk + (overlap_frames if i > 0 else 0) | |
| current_conditions = kwargs.get("initial_conditions", []) if i == 0 else [] | |
| if overlap_condition_item: current_conditions.append(overlap_condition_item) | |
| chunk_latents = self._generate_single_chunk_low( | |
| prompt=chunk_prompt, num_frames=current_frames, seed=used_seed + i, | |
| conditioning_items=current_conditions, **kwargs | |
| ) | |
| if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for chunk {i+1}.") | |
| if i < num_chunks - 1: | |
| overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone() | |
| overlap_condition_item = ConditioningItem(media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0) | |
| if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :] | |
| chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt" | |
| torch.save(chunk_latents.cpu(), chunk_path) | |
| temp_latent_paths.append(chunk_path) | |
| return self._finalize_generation(temp_latent_paths, "narrative_video", used_seed) | |
| except Exception as e: | |
| logging.error(f"Error during narrative generation: {e}", exc_info=True) | |
| return None, None, None | |
| finally: | |
| for path in temp_latent_paths: | |
| if path.exists(): path.unlink() | |
| self.finalize() | |
| def generate_single_low(self, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]: | |
| """Orchestrates the generation of a video from a single prompt in one go.""" | |
| logging.info("Starting single-prompt low-res generation...") | |
| used_seed = self._resolve_seed(kwargs.get("seed")) | |
| seed_everything(used_seed) | |
| try: | |
| total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0), min_frames=9) | |
| final_latents = self._generate_single_chunk_low( | |
| num_frames=total_frames, seed=used_seed, | |
| conditioning_items=kwargs.get("initial_conditions", []), **kwargs | |
| ) | |
| if final_latents is None: raise RuntimeError("Failed to generate latents.") | |
| temp_latent_path = RESULTS_DIR / f"temp_single_{used_seed}.pt" | |
| torch.save(final_latents.cpu(), temp_latent_path) | |
| return self._finalize_generation([temp_latent_path], "single_video", used_seed) | |
| except Exception as e: | |
| logging.error(f"Error during single generation: {e}", exc_info=True) | |
| return None, None, None | |
| finally: | |
| self.finalize() | |
| # ========================================================================== | |
| # --- UNIDADES DE TRABALHO E HELPERS INTERNOS --- | |
| # ========================================================================== | |
| def _generate_single_chunk_low(self, **kwargs) -> Optional[torch.Tensor]: | |
| """Calls the pipeline to generate a single chunk of latents.""" | |
| height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width'])) | |
| downscale_factor = self.config.get("downscale_factor", 0.6666666) | |
| vae_scale_factor = self.pipeline.vae_scale_factor | |
| downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor) | |
| downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor) | |
| first_pass_config = self.config.get("first_pass", {}).copy() | |
| if kwargs.get("ltx_configs_override"): | |
| first_pass_config.update(self._prepare_guidance_overrides(kwargs["ltx_configs_override"])) | |
| pipeline_kwargs = { | |
| "prompt": kwargs['prompt'], "negative_prompt": kwargs['negative_prompt'], | |
| "height": downscaled_height, "width": downscaled_width, "num_frames": kwargs['num_frames'], | |
| "frame_rate": DEFAULT_FPS, "generator": torch.Generator(device=self.main_device).manual_seed(kwargs['seed']), | |
| "output_type": "latent", "conditioning_items": kwargs['conditioning_items'], **first_pass_config | |
| } | |
| with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type): | |
| latents_raw = self.pipeline(**pipeline_kwargs).images | |
| return latents_raw.to(self.main_device) | |
| def _finalize_generation(self, temp_latent_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]: | |
| """Consolidates latents, decodes them to video, and saves final artifacts.""" | |
| logging.info("Finalizing generation: decoding latents to video.") | |
| all_tensors_cpu = [torch.load(p) for p in temp_latent_paths] | |
| final_latents = torch.cat(all_tensors_cpu, dim=2) | |
| final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt" | |
| torch.save(final_latents, final_latents_path) | |
| logging.info(f"Final latents saved to: {final_latents_path}") | |
| pixel_tensor = vae_manager_singleton.decode( | |
| final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)) | |
| ) | |
| video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}") | |
| return str(video_path), str(final_latents_path), seed | |
| def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]: | |
| if not items_list: return [] | |
| height_padded, width_padded = self._align(height), self._align(width) | |
| padding_values = calculate_padding(height, width, height_padded, width_padded) | |
| conditioning_items = [] | |
| for media, frame, weight in items_list: | |
| tensor = self._prepare_conditioning_tensor(media, height, width, padding_values) | |
| safe_frame = max(0, min(int(frame), num_frames - 1)) | |
| conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight))) | |
| return conditioning_items | |
| def _prepare_conditioning_tensor(self, media_path: str, height: int, width: int, padding: Tuple) -> torch.Tensor: | |
| tensor = load_image_to_tensor_with_resize_and_crop(media_path, height, width) | |
| tensor = torch.nn.functional.pad(tensor, padding) | |
| return tensor.to(self.main_device, dtype=self.runtime_autocast_dtype) | |
| def _prepare_guidance_overrides(self, ltx_configs: Dict) -> Dict: | |
| overrides = {} | |
| preset = ltx_configs.get("guidance_preset", "Padrão (Recomendado)") | |
| if preset == "Agressivo": | |
| overrides["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1] | |
| overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2] | |
| elif preset == "Suave": | |
| overrides["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1] | |
| overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0] | |
| elif preset == "Customizado": | |
| try: | |
| overrides["guidance_scale"] = json.loads(ltx_configs["guidance_scale_list"]) | |
| overrides["stg_scale"] = json.loads(ltx_configs["stg_scale_list"]) | |
| except (json.JSONDecodeError, KeyError) as e: | |
| logging.warning(f"Failed to parse custom guidance values: {e}. Falling back to defaults.") | |
| if overrides: logging.info(f"Applying '{preset}' guidance preset overrides.") | |
| return overrides | |
| def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path: | |
| with tempfile.TemporaryDirectory() as temp_dir: | |
| temp_path = os.path.join(temp_dir, f"{base_filename}.mp4") | |
| video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS) | |
| final_path = RESULTS_DIR / f"{base_filename}.mp4" | |
| shutil.move(temp_path, final_path) | |
| logging.info(f"Video saved successfully to: {final_path}") | |
| return final_path | |
| def _apply_precision_policy(self): | |
| precision = str(self.config.get("precision", "bfloat16")).lower() | |
| if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16 | |
| elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16 | |
| else: self.runtime_autocast_dtype = torch.float32 | |
| logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}") | |
| def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT) -> int: | |
| return ((dim - 1) // alignment + 1) * alignment | |
| def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int: | |
| num_frames = int(round(duration_s * DEFAULT_FPS)) | |
| aligned_frames = self._align(num_frames) | |
| return max(aligned_frames + 1, min_frames) | |
| def _resolve_seed(self, seed: Optional[int]) -> int: | |
| return random.randint(0, 2**32 - 1) if seed is None else int(seed) | |
| # ============================================================================== | |
| # --- INSTANCIAÇÃO SINGLETON --- | |
| # ============================================================================== | |
| try: | |
| video_generation_service = VideoService() | |
| logging.info("Global VideoService orchestrator instance created successfully.") | |
| except Exception as e: | |
| logging.critical(f"Failed to initialize VideoService: {e}", exc_info=True) | |
| sys.exit(1) |