Spaces:
Paused
Paused
File size: 18,430 Bytes
3b5ff37 1bcfa92 d7c623e 770f85b 3b5ff37 3f8bf2e 3b5ff37 749824e 3f8bf2e 3b5ff37 1bcfa92 3b5ff37 0ef1c82 3b5ff37 d7c623e 1bcfa92 3b5ff37 1bcfa92 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3f8bf2e 3b5ff37 0ef1c82 71052e8 3f8bf2e 0ef1c82 3f8bf2e d795566 3b5ff37 0ef1c82 3b5ff37 71052e8 3b5ff37 0ef1c82 1bcfa92 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 71052e8 3b5ff37 0ef1c82 3b5ff37 1bcfa92 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 1bcfa92 71052e8 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 71052e8 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 d795566 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 fec3865 0ef1c82 3b5ff37 2134e1a 0ef1c82 3b5ff37 71052e8 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 71052e8 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 71052e8 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 71052e8 3b5ff37 71052e8 3b5ff37 71052e8 3b5ff37 0ef1c82 3b5ff37 d0d8baa 3b5ff37 0ef1c82 3b5ff37 d0d8baa 3b5ff37 0ef1c82 d0d8baa 3b5ff37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# FILE: api/ltx_server_refactored_complete.py
# DESCRIPTION: Final orchestrator for LTX-Video generation.
# Features path resolution for cached models, dedicated VAE device logic,
# delegation to utility modules, and advanced debug logging.
import gc
import json
import logging
import os
import shutil
import sys
import tempfile
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import random
import torch
import yaml
import numpy as np
from huggingface_hub import hf_hub_download
# ==============================================================================
# --- SETUP E IMPORTAÇÕES DO PROJETO ---
# ==============================================================================
# Configuração de logging e supressão de warnings
# (Pode ser removido se o logging for configurado globalmente)
import warnings
warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper()
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')
# --- Constantes de Configuração ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8
LTX_REPO_ID = "Lightricks/LTX-Video" # Repositório de onde os modelos são baixados
# Garante que a biblioteca LTX-Video seja importável
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
logging.info(f"[ltx_server] LTX-Video repository added to sys.path: {repo_path}")
add_deps_to_path()
# --- Módulos da nossa Arquitetura ---
try:
from api.gpu_manager import gpu_manager
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
from api.ltx.ltx_utils import (
build_ltx_pipeline_on_cpu,
seed_everything,
load_image_to_tensor_with_resize_and_crop,
ConditioningItem,
)
from api.utils.debug_utils import log_function_io
except ImportError as e:
logging.critical(f"A crucial import from the local API/architecture failed. Error: {e}", exc_info=True)
sys.exit(1)
# ==============================================================================
# --- FUNÇÕES AUXILIARES DO ORQUESTRADOR ---
# ==============================================================================
@log_function_io
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
"""Calculates symmetric padding required to meet target dimensions."""
pad_h = target_h - orig_h
pad_w = target_w - orig_w
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
pad_left = pad_w // 2
pad_right = pad_w - pad_left
return (pad_left, pad_right, pad_top, pad_bottom)
# ==============================================================================
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
# ==============================================================================
class VideoService:
"""
Orchestrates the high-level logic of video generation, delegating low-level
tasks to specialized managers and utility modules.
"""
@log_function_io
def __init__(self):
t0 = time.perf_counter()
logging.info("Initializing VideoService Orchestrator...")
RESULTS_DIR.mkdir(parents=True, exist_ok=True)
target_main_device_str = str(gpu_manager.get_ltx_device())
target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")
self.config = self._load_config()
self._resolve_model_paths_from_cache() # Etapa crítica para encontrar os modelos
self.pipeline, self.latent_upsampler = build_ltx_pipeline_on_cpu(self.config)
self.main_device = torch.device("cpu")
self.vae_device = torch.device("cpu")
self.move_to_device(main_device_str=target_main_device_str, vae_device_str=target_vae_device_str)
self._apply_precision_policy()
vae_manager_singleton.attach_pipeline(self.pipeline, device=self.vae_device, autocast_dtype=self.runtime_autocast_dtype)
logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s")
def _load_config(self) -> Dict:
"""Loads the YAML configuration file."""
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
logging.info(f"Loading config from: {config_path}")
with open(config_path, "r") as file:
return yaml.safe_load(file)
def _resolve_model_paths_from_cache(self):
"""
Uses hf_hub_download to find the absolute paths to model files in the cache,
updating the in-memory config. This makes the app resilient to cache structure.
"""
logging.info("Resolving model paths from Hugging Face cache...")
cache_dir = os.environ.get("HF_HOME")
try:
# Resolve o caminho do checkpoint principal
main_ckpt_filename = self.config["checkpoint_path"]
main_ckpt_path = hf_hub_download(
repo_id=LTX_REPO_ID,
filename=main_ckpt_filename,
cache_dir=cache_dir
)
self.config["checkpoint_path"] = main_ckpt_path
logging.info(f" -> Main checkpoint resolved to: {main_ckpt_path}")
# Resolve o caminho do upsampler, se existir
if self.config.get("spatial_upscaler_model_path"):
upscaler_filename = self.config["spatial_upscaler_model_path"]
upscaler_path = hf_hub_download(
repo_id=LTX_REPO_ID,
filename=upscaler_filename,
cache_dir=cache_dir
)
self.config["spatial_upscaler_model_path"] = upscaler_path
logging.info(f" -> Spatial upscaler resolved to: {upscaler_path}")
except Exception as e:
logging.critical(f"Failed to resolve model paths. Ensure setup.py ran correctly. Error: {e}", exc_info=True)
sys.exit(1)
@log_function_io
def move_to_device(self, main_device_str: str, vae_device_str: str):
"""Moves pipeline components to their designated target devices."""
target_main_device = torch.device(main_device_str)
target_vae_device = torch.device(vae_device_str)
logging.info(f"Moving LTX models -> Main Pipeline: {target_main_device}, VAE: {target_vae_device}")
self.main_device = target_main_device
self.pipeline.to(self.main_device)
self.vae_device = target_vae_device
self.pipeline.vae.to(self.vae_device)
if self.latent_upsampler: self.latent_upsampler.to(self.main_device)
logging.info("LTX models successfully moved to target devices.")
def move_to_cpu(self):
"""Moves all LTX components to CPU to free VRAM for other services."""
self.move_to_device(main_device_str="cpu", vae_device_str="cpu")
if torch.cuda.is_available(): torch.cuda.empty_cache()
def finalize(self):
"""Cleans up GPU memory after a generation task."""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
try: torch.cuda.ipc_collect();
except Exception: pass
# ==========================================================================
# --- LÓGICA DE NEGÓCIO: ORQUESTRADORES PÚBLICOS ---
# ==========================================================================
@log_function_io
def generate_narrative_low(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
"""Orchestrates the generation of a video from a multi-line prompt (sequence of scenes)."""
logging.info("Starting narrative low-res generation...")
used_seed = self._resolve_seed(kwargs.get("seed"))
seed_everything(used_seed)
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
if not prompt_list: raise ValueError("Prompt is empty or contains no valid lines.")
num_chunks = len(prompt_list)
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT
overlap_frames = self.config.get("overlap_frames", 8)
temp_latent_paths = []
overlap_condition_item = None
try:
for i, chunk_prompt in enumerate(prompt_list):
logging.info(f"Generating narrative chunk {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
current_frames = frames_per_chunk + (overlap_frames if i > 0 else 0)
current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
if overlap_condition_item: current_conditions.append(overlap_condition_item)
chunk_latents = self._generate_single_chunk_low(
prompt=chunk_prompt, num_frames=current_frames, seed=used_seed + i,
conditioning_items=current_conditions, **kwargs
)
if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for chunk {i+1}.")
if i < num_chunks - 1:
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
overlap_condition_item = ConditioningItem(media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0)
if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
torch.save(chunk_latents.cpu(), chunk_path)
temp_latent_paths.append(chunk_path)
return self._finalize_generation(temp_latent_paths, "narrative_video", used_seed)
except Exception as e:
logging.error(f"Error during narrative generation: {e}", exc_info=True)
return None, None, None
finally:
for path in temp_latent_paths:
if path.exists(): path.unlink()
self.finalize()
@log_function_io
def generate_single_low(self, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
"""Orchestrates the generation of a video from a single prompt in one go."""
logging.info("Starting single-prompt low-res generation...")
used_seed = self._resolve_seed(kwargs.get("seed"))
seed_everything(used_seed)
try:
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0), min_frames=9)
final_latents = self._generate_single_chunk_low(
num_frames=total_frames, seed=used_seed,
conditioning_items=kwargs.get("initial_conditions", []), **kwargs
)
if final_latents is None: raise RuntimeError("Failed to generate latents.")
temp_latent_path = RESULTS_DIR / f"temp_single_{used_seed}.pt"
torch.save(final_latents.cpu(), temp_latent_path)
return self._finalize_generation([temp_latent_path], "single_video", used_seed)
except Exception as e:
logging.error(f"Error during single generation: {e}", exc_info=True)
return None, None, None
finally:
self.finalize()
# ==========================================================================
# --- UNIDADES DE TRABALHO E HELPERS INTERNOS ---
# ==========================================================================
@log_function_io
def _generate_single_chunk_low(self, **kwargs) -> Optional[torch.Tensor]:
"""Calls the pipeline to generate a single chunk of latents."""
height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
first_pass_config = self.config.get("first_pass", {}).copy()
if kwargs.get("ltx_configs_override"):
first_pass_config.update(self._prepare_guidance_overrides(kwargs["ltx_configs_override"]))
pipeline_kwargs = {
"prompt": kwargs['prompt'], "negative_prompt": kwargs['negative_prompt'],
"height": downscaled_height, "width": downscaled_width, "num_frames": kwargs['num_frames'],
"frame_rate": DEFAULT_FPS, "generator": torch.Generator(device=self.main_device).manual_seed(kwargs['seed']),
"output_type": "latent", "conditioning_items": kwargs['conditioning_items'], **first_pass_config
}
with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
latents_raw = self.pipeline(**pipeline_kwargs).images
return latents_raw.to(self.main_device)
@log_function_io
def _finalize_generation(self, temp_latent_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
"""Consolidates latents, decodes them to video, and saves final artifacts."""
logging.info("Finalizing generation: decoding latents to video.")
all_tensors_cpu = [torch.load(p) for p in temp_latent_paths]
final_latents = torch.cat(all_tensors_cpu, dim=2)
final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
torch.save(final_latents, final_latents_path)
logging.info(f"Final latents saved to: {final_latents_path}")
pixel_tensor = vae_manager_singleton.decode(
final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
return str(video_path), str(final_latents_path), seed
@log_function_io
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
if not items_list: return []
height_padded, width_padded = self._align(height), self._align(width)
padding_values = calculate_padding(height, width, height_padded, width_padded)
conditioning_items = []
for media, frame, weight in items_list:
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
safe_frame = max(0, min(int(frame), num_frames - 1))
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
return conditioning_items
@log_function_io
def _prepare_conditioning_tensor(self, media_path: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
tensor = load_image_to_tensor_with_resize_and_crop(media_path, height, width)
tensor = torch.nn.functional.pad(tensor, padding)
return tensor.to(self.main_device, dtype=self.runtime_autocast_dtype)
def _prepare_guidance_overrides(self, ltx_configs: Dict) -> Dict:
overrides = {}
preset = ltx_configs.get("guidance_preset", "Padrão (Recomendado)")
if preset == "Agressivo":
overrides["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
elif preset == "Suave":
overrides["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
elif preset == "Customizado":
try:
overrides["guidance_scale"] = json.loads(ltx_configs["guidance_scale_list"])
overrides["stg_scale"] = json.loads(ltx_configs["stg_scale_list"])
except (json.JSONDecodeError, KeyError) as e:
logging.warning(f"Failed to parse custom guidance values: {e}. Falling back to defaults.")
if overrides: logging.info(f"Applying '{preset}' guidance preset overrides.")
return overrides
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS)
final_path = RESULTS_DIR / f"{base_filename}.mp4"
shutil.move(temp_path, final_path)
logging.info(f"Video saved successfully to: {final_path}")
return final_path
def _apply_precision_policy(self):
precision = str(self.config.get("precision", "bfloat16")).lower()
if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
else: self.runtime_autocast_dtype = torch.float32
logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")
def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT) -> int:
return ((dim - 1) // alignment + 1) * alignment
def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
num_frames = int(round(duration_s * DEFAULT_FPS))
aligned_frames = self._align(num_frames)
return max(aligned_frames + 1, min_frames)
def _resolve_seed(self, seed: Optional[int]) -> int:
return random.randint(0, 2**32 - 1) if seed is None else int(seed)
# ==============================================================================
# --- INSTANCIAÇÃO SINGLETON ---
# ==============================================================================
try:
video_generation_service = VideoService()
logging.info("Global VideoService orchestrator instance created successfully.")
except Exception as e:
logging.critical(f"Failed to initialize VideoService: {e}", exc_info=True)
sys.exit(1) |