Test / app.py
eeuuia's picture
Update app.py
345823d verified
raw
history blame
12.5 kB
# FILE: app.py
# DESCRIPTION: Final Gradio web interface for the ADUC-SDR Video Suite.
# This version is updated to import from the new modular file structure,
# including the renamed ADUC pipelines and moved managers.
import gradio as gr
import traceback
import sys
import os
import logging
from typing import List
from PIL import Image as PILImage
import logging
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as ll
ll.set_verbosity_error()
ll.set_verbosity_warning()
ll.set_verbosity_info()
ll.set_verbosity_debug()
logger = logging.getLogger("AducDebug")
logging.basicConfig(level=logging.DEBUG)
logger.setLevel(logging.DEBUG)
# ==============================================================================
# --- IMPORTAÇÃO DOS SERVIÇOS DE BACKEND E UTILS (CAMINHOS ATUALIZADOS) ---
# ==============================================================================
from api.ltx.ltx_aduc_pipeline import ltx_aduc_pipeline
from utils.debug_utils import log_function_io
from api.seedvr.seedvr_aduc_pipeline import seed_aduc_pipeline as seed_aduc_pipeline
logging.info("All backend services and utils imported successfully from new paths.")
# ==============================================================================
# --- FUNÇÕES WRAPPER (PONTE ENTRE UI E BACKEND) ---
# ==============================================================================
@log_function_io
def run_generate_base_video(
prompt: str, neg_prompt: str, start_img: PILImage.Image,
height: int, width: int, duration: float,
fp_num_inference_steps: int, fp_skip_initial_steps: int, fp_skip_final_steps: int,
progress=gr.Progress(track_tqdm=True)
) -> tuple:
"""
Wrapper final que prepara os dados da UI e chama o backend com a API simplificada.
"""
try:
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
if not prompt_list:
raise gr.Error("O campo de prompt não pode estar vazio.")
logging.info(f"[UI] Request received with {len(prompt_list)} scene(s).")
initial_media_list = []
if start_img:
initial_media_list.append((start_img, 0, 1.0))
ltx_configs = {
"num_inference_steps": fp_num_inference_steps,
"skip_initial_inference_steps": fp_skip_initial_steps,
"skip_final_inference_steps": fp_skip_final_steps,
}
video_path, tensor_path, final_seed = ltx_aduc_pipeline.generate_low_resolution(
prompt_list=prompt_list,
negative_prompt=neg_prompt,
height=height, width=width, duration=duration,
initial_media_items=initial_media_list,
ltx_configs_override=ltx_configs
)
if not video_path: raise RuntimeError("Backend failed to return a valid video path.")
new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed}
logging.info(f"[UI] Base video generation successful. Seed used: {final_seed}, Path: {video_path}")
return video_path, new_state, gr.update(visible=True)
except Exception as e:
error_message = f"❌ An error occurred during base generation:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
raise gr.Error(error_message)
@log_function_io
def run_ltx_refinement(state: dict, prompt: str, neg_prompt: str, progress=gr.Progress(track_tqdm=True)) -> tuple:
"""Wrapper para o refinamento de textura LTX."""
if not state or not state.get("low_res_latents"):
raise gr.Error("Error: Please generate a base video in Step 1 before refining.")
try:
logging.info(f"[UI] Requesting LTX refinement for latents: {state.get('low_res_latents')}")
video_path, tensor_path = ltx_aduc_pipeline.generate_upscale_denoise(
latents_path=state["low_res_latents"],
prompt=prompt, negative_prompt=neg_prompt,
seed=state["used_seed"]
)
state["refined_video_ltx"] = video_path
state["refined_latents_ltx"] = tensor_path
logging.info(f"[UI] LTX refinement successful. Path: {video_path}")
return video_path, state
except Exception as e:
error_message = f"❌ An error occurred during LTX Refinement:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
raise gr.Error(error_message)
@log_function_io
def run_seedvr_upscaling(state: dict, seed: int, resolution: int, batch_size: int, fps: int, progress=gr.Progress(track_tqdm=True)) -> tuple:
"""Wrapper para o upscale de resolução SeedVR."""
if not state or not state.get("low_res_video"):
raise gr.Error("Error: Please generate a base video in Step 1 before upscaling.")
if not seed_aduc_pipeline:
raise gr.Error("Error: The SeedVR upscaling server is not available.")
try:
logging.info(f"[UI] Requesting SeedVR upscaling for video: {state.get('low_res_video')}")
def progress_wrapper(p, desc=""): progress(p, desc=desc)
output_filepath = seed_aduc_pipeline.run_inference(
file_path=state["low_res_video"], seed=int(seed), resolution=int(resolution),
batch_size=int(batch_size), fps=float(fps), progress=progress_wrapper
)
status_message = f"✅ Upscaling complete!\nSaved to: {output_filepath}"
logging.info(f"[UI] SeedVR upscaling successful. Path: {output_filepath}")
return gr.update(value=output_filepath), gr.update(value=status_message)
except Exception as e:
error_message = f"❌ An error occurred during SeedVR Upscaling:\n{e}"
logging.error(f"{error_message}\nDetails: {traceback.format_exc()}", exc_info=True)
return None, gr.update(value=error_message)
# ==============================================================================
# --- CONSTRUÇÃO DA INTERFACE GRADIO ---
# ==============================================================================
def build_ui():
"""Constrói a interface completa do Gradio."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as demo:
app_state = gr.State(value={"low_res_video": None, "low_res_latents": None, "used_seed": None})
ui_components = {}
gr.Markdown("🚀 ADUC-SDR Video Suite - Infinite LTX & SeedVR Workflow", elem_id="main-title")
with gr.Row():
with gr.Column(scale=1): _build_generation_controls(ui_components)
with gr.Column(scale=1):
gr.Markdown("### Etapa 1: Vídeo Base Gerado")
ui_components['low_res_video_output'] = gr.Video(label="O resultado aparecerá aqui", interactive=True)
ui_components['used_seed_display'] = gr.Textbox(label="Seed Utilizada", visible=False, interactive=False)
_build_postprod_controls(ui_components)
_register_event_handlers(app_state, ui_components)
return demo
def _build_generation_controls(ui: dict):
"""Constrói os componentes da UI, sem seleção de modo."""
gr.Markdown("### Configurações de Geração")
ui['prompt'] = gr.Textbox(label="Prompt(s)", info="Para múltiplas cenas escreva um linha por prompt.", value="", lines=6)
ui['neg_prompt'] = gr.Textbox(label="Negative Prompt", visible=False, value="blurry, low quality, bad anatomy, deformed", lines=2)
ui['start_image'] = gr.Image(label="Imagem de Início (Opcional)", type="pil", sources=["upload"])
with gr.Accordion("Parâmetros Principais", open=True):
ui['duration'] = gr.Slider(label="Duração Total (s)", value=4, step=1, minimum=1, maximum=30)
with gr.Row():
ui['height'] = gr.Slider(label="Height", value=432, step=128, minimum=256, maximum=1024)
ui['width'] = gr.Slider(label="Width", value=768, step=128, minimum=256, maximum=1024)
with gr.Accordion("Opções Avançadas LTX", open=False):
gr.Markdown("#### Configurações de Passos de Inferência")
gr.Markdown("*Deixe o valor padrão (ex: 20) ou 0 para usar a configuração do `config.yaml`.*")
ui['fp_num_inference_steps'] = gr.Slider(label="Número de Passos", minimum=0, maximum=100, step=1, value=20, info="Padrão LTX: 20.")
ui['fp_skip_initial_steps'] = gr.Slider(label="Pular Passos Iniciais", minimum=0, maximum=100, step=1, value=0)
ui['fp_skip_final_steps'] = gr.Slider(label="Pular Passos Finais", minimum=0, maximum=100, step=1, value=0)
ui['generate_low_btn'] = gr.Button("1. Gerar Vídeo Base", variant="primary")
def _build_postprod_controls(ui: dict):
"""Constrói os componentes da UI para a Etapa 2: Pós-Produção."""
with gr.Group(visible=False) as ui['post_prod_group']:
gr.Markdown("--- \n## Etapa 2: Pós-Produção")
with gr.Tabs():
with gr.TabItem("🚀 Upscaler de Textura (LTX)"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("Usa o prompt e a semente originais para refinar o vídeo, adicionando detalhes e texturas de alta qualidade.")
ui['ltx_refine_btn'] = gr.Button("2. Aplicar Refinamento LTX", variant="primary")
with gr.Column(scale=1):
ui['ltx_refined_video_output'] = gr.Video(label="Vídeo com Textura Refinada", interactive=False)
with gr.TabItem("✨ Upscaler de Resolução (SeedVR)"):
is_seedvr_available = seed_aduc_pipeline is not None
if not is_seedvr_available:
gr.Markdown("🔴 **AVISO: O serviço SeedVR não está disponível.**")
with gr.Row():
with gr.Column(scale=1):
ui['seedvr_seed'] = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
ui['seedvr_resolution'] = gr.Slider(minimum=720, maximum=2160, value=1080, step=8, label="Resolução Vertical Alvo")
ui['seedvr_batch_size'] = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
ui['seedvr_fps'] = gr.Number(label="FPS de Saída (0 = original)", value=0)
ui['run_seedvr_btn'] = gr.Button("2. Iniciar Upscaling SeedVR", variant="primary", interactive=is_seedvr_available)
with gr.Column(scale=1):
ui['seedvr_video_output'] = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
ui['seedvr_status_box'] = gr.Textbox(label="Status do SeedVR", value="Aguardando...", lines=3, interactive=False)
def _register_event_handlers(app_state: gr.State, ui: dict):
"""Registra todos os manipuladores de eventos do Gradio."""
def update_seed_display(state):
return state.get("used_seed", "N/A")
gen_inputs = [
ui['prompt'], ui['neg_prompt'], ui['start_image'],
ui['height'], ui['width'], ui['duration'],
ui['fp_num_inference_steps'], ui['fp_skip_initial_steps'], ui['fp_skip_final_steps'],
]
gen_outputs = [ui['low_res_video_output'], app_state, ui['post_prod_group']]
(ui['generate_low_btn'].click(fn=run_generate_base_video, inputs=gen_inputs, outputs=gen_outputs)
.then(fn=update_seed_display, inputs=[app_state], outputs=[ui['used_seed_display']]))
refine_inputs = [app_state, ui['prompt'], ui['neg_prompt']]
refine_outputs = [ui['ltx_refined_video_output'], app_state]
ui['ltx_refine_btn'].click(fn=run_ltx_refinement, inputs=refine_inputs, outputs=refine_outputs)
if 'run_seedvr_btn' in ui and ui['run_seedvr_btn'].interactive:
seedvr_inputs = [app_state, ui['seedvr_seed'], ui['seedvr_resolution'], ui['seedvr_batch_size'], ui['seedvr_fps']]
seedvr_outputs = [ui['seedvr_video_output'], ui['seedvr_status_box']]
ui['run_seedvr_btn'].click(fn=run_seedvr_upscaling, inputs=seedvr_inputs, outputs=seedvr_outputs)
# ==============================================================================
# --- PONTO DE ENTRADA DA APLICAÇÃO ---
# ==============================================================================
if __name__ == "__main__":
demo = build_ui()
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)