Test / app.py
eeuuia's picture
Update app.py
fcf054d verified
raw
history blame
12.1 kB
import gradio as gr
import torch
import numpy as np
import tempfile
import os
import yaml
import json
import threading
from pathlib import Path
# Importações de Hugging Face
from huggingface_hub import snapshot_download, HfFolder
from transformers import T5EncoderModel, T5TokenizerFast
from diffusers import LTXLatentUpsamplePipeline
from diffusers.models import AutoencoderKLLTXVideo, LTXVideoTransformer3DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
# Nossa pipeline customizada e utilitários
from pipeline_ltx_condition_control import LTXConditionPipeline, LTXVideoCondition
from diffusers.utils import export_to_video
from PIL import Image, ImageOps
import imageio
# --- Configuração de Logging e Avisos ---
import warnings
import logging
warnings.filterwarnings("ignore", category="UserWarning")
warnings.filterwarnings("ignore", category="FutureWarning")
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging as hf_logging
hf_logging.set_verbosity_error()
# --- Classe de Serviço para Carregamento e Gerenciamento dos Modelos ---
class VideoGenerationService:
"""
Encapsula o carregamento e a configuração das pipelines de IA.
Carrega os componentes de forma explícita e modular a partir de um arquivo de configuração.
"""
def __init__(self, config_path: Path):
print("=== [Serviço de Geração de Vídeo] Inicializando... ===")
if not torch.cuda.is_available():
raise RuntimeError("CUDA é necessário para rodar este serviço.")
self.device = "cuda"
self.torch_dtype = torch.bfloat16
print(f"[Init] Dispositivo: {self.device}, DType: {self.torch_dtype}")
with open(config_path, "r") as f:
self.cfg = yaml.safe_load(f)
print(f"[Init] Configuração carregada de: {config_path}")
print(json.dumps(self.cfg, indent=2))
# Parâmetros do YAML
self.base_repo = self.cfg.get("base_repo")
self.checkpoint_path = self.cfg.get("checkpoint_path")
self.upscaler_repo = self.cfg.get("spatial_upscaler_model_path")
self._initialize()
print("=== [Serviço de Geração de Vídeo] Inicialização concluída. ===")
def _initialize(self):
print(f"=== [Init] Baixando snapshot do repositório base: {self.base_repo} ===")
local_repo_path = snapshot_download(
repo_id=self.base_repo,
token=os.getenv("HF_TOKEN") or HfFolder.get_token(),
resume_download=True
)
print("[Init] Carregando componentes da pipeline a partir de arquivos locais...")
self.vae = AutoencoderKLLTXVideo.from_pretrained(local_repo_path, subfolder="vae", torch_dtype=self.torch_dtype)
self.text_encoder = T5EncoderModel.from_pretrained(local_repo_path, subfolder="text_encoder", torch_dtype=self.torch_dtype)
self.tokenizer = T5TokenizerFast.from_pretrained(local_repo_path, subfolder="tokenizer")
self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(local_repo_path, subfolder="scheduler")
# Causa do erro anterior: desativar explicitamente o dynamic shifting para compatibilidade
if hasattr(self.scheduler.config, 'use_dynamic_shifting') and self.scheduler.config.use_dynamic_shifting:
print("[Init] Desativando 'use_dynamic_shifting' no scheduler.")
self.scheduler.config.use_dynamic_shifting = False
print(f"[Init] Carregando pesos do Transformer de: {self.checkpoint_path}")
self.transformer = LTXVideoTransformer3DModel.from_pretrained(
local_repo_path, subfolder="transformer", weight_name=self.checkpoint_path, torch_dtype=self.torch_dtype
)
print("[Init] Montando a LTXConditionPipeline...")
self.pipeline = LTXConditionPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer,
scheduler=self.scheduler, transformer=self.transformer
)
self.pipeline.to(self.device)
self.pipeline.vae.enable_tiling()
print(f"[Init] Carregando o upsampler espacial de: {self.upscaler_repo}")
self.upsampler = LTXLatentUpsamplePipeline.from_pretrained(
self.upscaler_repo, vae=self.vae, torch_dtype=self.torch_dtype
)
self.upsampler.to(self.device)
# --- Inicialização da Aplicação ---
CONFIG_PATH = Path("ltx_config.yaml")
if not CONFIG_PATH.exists():
raise FileNotFoundError(f"Arquivo de configuração '{CONFIG_PATH}' não encontrado. Crie-o antes de executar a aplicação.")
# Instancia o serviço que carrega e mantém os modelos
service = VideoGenerationService(config_path=CONFIG_PATH)
pipeline = service.pipeline
pipe_upsample = service.upsampler
FPS = 24
# --- Lógica Principal da Geração de Vídeo ---
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_temporal_compression_ratio):
height = height - (height % vae_temporal_compression_ratio)
width = width - (width % vae_temporal_compression_ratio)
return height, width
def prepare_and_generate_video(
condition_image_1, condition_strength_1, condition_frame_index_1,
condition_image_2, condition_strength_2, condition_frame_index_2,
prompt, duration, negative_prompt,
height, width, guidance_scale, seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)
):
try:
conditions_data = [
(condition_image_1, condition_strength_1, condition_frame_index_1),
(condition_image_2, condition_strength_2, condition_frame_index_2)
]
if randomize_seed:
seed = random.randint(0, 2**32 - 1)
num_frames = int(duration * FPS) + 1
temporal_compression = pipeline.vae_temporal_compression_ratio
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
# Etapa 1: Preparar condições para baixa resolução
downscale_factor = 2 / 3
downscaled_height = int(height * downscale_factor)
downscaled_width = int(width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(
downscaled_height, downscaled_width, pipeline.vae_temporal_compression_ratio
)
conditions_low_res = []
for image, strength, frame_index in conditions_data:
if image is not None:
processed_image = ImageOps.fit(image, (downscaled_width, downscaled_height), Image.LANCZOS)
conditions_low_res.append(LTXVideoCondition(
image=processed_image, strength=strength, frame_index=int(frame_index)
))
pipeline_args_low_res = {"conditions": conditions_low_res} if conditions_low_res else {}
latents = pipeline(
prompt=prompt, negative_prompt=negative_prompt, width=downscaled_width, height=downscaled_height,
num_frames=num_frames, generator=torch.Generator().manual_seed(seed),
output_type="latent", **pipeline_args_low_res
).frames
# Etapa 2: Upscale
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
upscaled_latents = pipe_upsample(latents=latents, output_type="latent").frames
# Etapa 3: Preparar condições para alta resolução (para manter frames imutáveis)
conditions_high_res = []
for image, strength, frame_index in conditions_data:
if image is not None:
processed_image_high_res = ImageOps.fit(image, (upscaled_width, upscaled_height), Image.LANCZOS)
conditions_high_res.append(LTXVideoCondition(
image=processed_image_high_res, strength=strength, frame_index=int(frame_index)
))
pipeline_args_high_res = {"conditions": conditions_high_res} if conditions_high_res else {}
final_video_frames_np = pipeline(
prompt=prompt, negative_prompt=negative_prompt, width=upscaled_width, height=upscaled_height,
num_frames=num_frames, denoise_strength=0.999, latents=upscaled_latents,
generator=torch.Generator(device="cuda").manual_seed(seed),
output_type="np", **pipeline_args_high_res
).frames[0]
# Etapa 4: Exportação
video_uint8_frames = [(frame * 255).astype(np.uint8) for frame in final_video_frames_np]
output_filename = "output.mp4"
with imageio.get_writer(output_filename, fps=FPS, quality=8, macro_block_size=1) as writer:
for frame_idx, frame_data in enumerate(video_uint8_frames):
progress((frame_idx + 1) / len(video_uint8_frames), desc="Codificando frames do vídeo...")
writer.append_data(frame_data)
return output_filename, seed
except Exception as e:
print(f"Ocorreu um erro: {e}")
import traceback
traceback.print_exc()
return None, seed
# --- Interface Gráfica com Gradio ---
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"]), delete_cache=(60, 900)) as demo:
gr.Markdown("# Geração de Vídeo com LTX\n**Crie vídeos a partir de texto e imagens de condição.**")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", placeholder="Descreva o vídeo que você quer gerar...", lines=3, value="O Coringa dançando em um quarto escuro, iluminação dramática.")
with gr.Accordion("Imagem de Condição 1", open=True):
condition_image_1 = gr.Image(label="Imagem 1", type="pil")
with gr.Row():
condition_strength_1 = gr.Slider(label="Peso", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_1 = gr.Number(label="Frame", value=0, precision=0)
with gr.Accordion("Imagem de Condição 2", open=False):
condition_image_2 = gr.Image(label="Imagem 2", type="pil")
with gr.Row():
condition_strength_2 = gr.Slider(label="Peso", minimum=0.0, maximum=1.0, step=0.05, value=1.0)
condition_frame_index_2 = gr.Number(label="Frame", value=0, precision=0)
duration = gr.Slider(label="Duração (s)", minimum=1.0, maximum=10.0, step=0.5, value=2)
with gr.Accordion("Configurações Avançadas", open=False):
negative_prompt = gr.Textbox(label="Prompt Negativo", lines=2, value="pior qualidade, embaçado, tremido, distorcido")
with gr.Row():
height = gr.Slider(label="Altura", minimum=256, maximum=1536, step=32, value=768)
width = gr.Slider(label="Largura", minimum=256, maximum=1536, step=32, value=1152)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance", minimum=1.0, maximum=5.0, step=0.1, value=1.0)
randomize_seed = gr.Checkbox(label="Seed Aleatória", value=True)
seed = gr.Number(label="Seed", value=0, precision=0)
generate_btn = gr.Button("Gerar Vídeo", variant="primary", size="lg")
with gr.Column(scale=1):
output_video = gr.Video(label="Vídeo Gerado", height=400)
generated_seed = gr.Number(label="Seed Utilizada", interactive=False)
generate_btn.click(
fn=prepare_and_generate_video,
inputs=[
condition_image_1, condition_strength_1, condition_frame_index_1,
condition_image_2, condition_strength_2, condition_frame_index_2,
prompt, duration, negative_prompt,
height, width, guidance_scale, seed, randomize_seed,
],
outputs=[output_video, generated_seed]
)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)