Spaces:
Paused
Paused
Update api/ltx_server_refactored_complete.py
Browse files- api/ltx_server_refactored_complete.py +419 -190
api/ltx_server_refactored_complete.py
CHANGED
|
@@ -1,214 +1,443 @@
|
|
| 1 |
-
# FILE: api/
|
| 2 |
-
# DESCRIPTION:
|
|
|
|
| 3 |
|
| 4 |
-
import os
|
| 5 |
-
import sys
|
| 6 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import subprocess
|
| 8 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from pathlib import Path
|
| 10 |
-
from typing import List
|
| 11 |
|
| 12 |
import torch
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
try:
|
| 18 |
from api.gpu_manager import gpu_manager
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
except ImportError as e:
|
| 20 |
-
|
| 21 |
sys.exit(1)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def _load_model_task(self):
|
| 61 |
-
"""Tarefa de carregamento do modelo, executada no ambiente isolado."""
|
| 62 |
-
print(f"[VinceWorker-{self.device_id_str}] Carregando modelo para VRAM (GPU física visível: {self.gpu_index_str})...")
|
| 63 |
-
# O dispositivo para o VINCIE será 'cuda:0' porque é a única GPU que este processo pode ver.
|
| 64 |
-
device_for_vincie = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
| 65 |
-
|
| 66 |
-
original_cwd = Path.cwd()
|
| 67 |
try:
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
from common.config import load_config, create_object
|
| 74 |
-
|
| 75 |
-
cfg = load_config(self.config_path, [f"device='{device_for_vincie}'"])
|
| 76 |
-
self.gen = create_object(cfg)
|
| 77 |
-
self.config = cfg
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
try:
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
if
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
| 112 |
finally:
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
"
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
# --- Classe Pool Manager (A Orquestradora Singleton) ---
|
| 127 |
-
class VincePoolManager:
|
| 128 |
-
_instance = None
|
| 129 |
-
_lock = threading.Lock()
|
| 130 |
-
|
| 131 |
-
def __new__(cls, *args, **kwargs):
|
| 132 |
-
with cls._lock:
|
| 133 |
-
if cls._instance is None:
|
| 134 |
-
cls._instance = super().__new__(cls)
|
| 135 |
-
cls._instance._initialized = False
|
| 136 |
-
return cls._instance
|
| 137 |
-
|
| 138 |
-
def __init__(self, output_root: str = "/app/outputs"):
|
| 139 |
-
if self._initialized: return
|
| 140 |
-
with self._lock:
|
| 141 |
-
if self._initialized: return
|
| 142 |
-
|
| 143 |
-
print("⚙️ Inicializando o VincePoolManager Singleton...")
|
| 144 |
-
self.output_root = Path(output_root)
|
| 145 |
-
self.output_root.mkdir(parents=True, exist_ok=True)
|
| 146 |
-
self.worker_lock = threading.Lock()
|
| 147 |
-
self.next_worker_idx = 0
|
| 148 |
-
|
| 149 |
-
# Pergunta ao gerenciador central quais GPUs ele pode usar.
|
| 150 |
-
self.allocated_gpu_indices = gpu_manager.get_vincie_devices()
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
return
|
| 159 |
-
|
| 160 |
-
devices = [f'cuda:{i}' for i in self.allocated_gpu_indices]
|
| 161 |
-
vincie_config_path = VINCIE_DIR / "configs/generate.yaml"
|
| 162 |
-
if not vincie_config_path.exists():
|
| 163 |
-
raise FileNotFoundError(f"Arquivo de configuração do VINCIE não encontrado em {vincie_config_path}")
|
| 164 |
-
|
| 165 |
-
self.workers = [VinceWorker(dev_id, str(vincie_config_path)) for dev_id in devices]
|
| 166 |
-
|
| 167 |
-
print(f"Iniciando carregamento dos modelos em paralelo para {len(self.workers)} GPUs VINCIE...")
|
| 168 |
-
threads = [threading.Thread(target=worker.load_model_to_gpu) for worker in self.workers]
|
| 169 |
-
for t in threads: t.start()
|
| 170 |
-
for t in threads: t.join()
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
self.
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
def
|
| 196 |
-
"""
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
try:
|
| 209 |
-
|
| 210 |
-
|
| 211 |
except Exception as e:
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
vince_pool_manager_singleton = None
|
|
|
|
| 1 |
+
# FILE: api/ltx_server_refactored_complete.py
|
| 2 |
+
# DESCRIPTION: Final backend service for LTX-Video generation.
|
| 3 |
+
# Features dedicated VAE device logic, robust initialization, and narrative chunking.
|
| 4 |
|
|
|
|
|
|
|
| 5 |
import gc
|
| 6 |
+
import io
|
| 7 |
+
import json
|
| 8 |
+
import logging
|
| 9 |
+
import os
|
| 10 |
+
import random
|
| 11 |
+
import shutil
|
| 12 |
import subprocess
|
| 13 |
+
import sys
|
| 14 |
+
import tempfile
|
| 15 |
+
import time
|
| 16 |
+
import traceback
|
| 17 |
+
import warnings
|
| 18 |
from pathlib import Path
|
| 19 |
+
from typing import Dict, List, Optional, Tuple
|
| 20 |
|
| 21 |
import torch
|
| 22 |
+
import yaml
|
| 23 |
+
import numpy as np
|
| 24 |
+
from einops import rearrange
|
| 25 |
+
from huggingface_hub import hf_hub_download
|
| 26 |
+
|
| 27 |
+
# ==============================================================================
|
| 28 |
+
# --- INITIAL SETUP & CONFIGURATION ---
|
| 29 |
+
# ==============================================================================
|
| 30 |
|
| 31 |
+
warnings.filterwarnings("ignore")
|
| 32 |
+
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
|
| 33 |
+
logging.basicConfig(level=logging.INFO, format='[%(levelname)s] %(message)s')
|
| 34 |
+
|
| 35 |
+
# --- CONSTANTS ---
|
| 36 |
+
DEPS_DIR = Path("/data")
|
| 37 |
+
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 38 |
+
BASE_CONFIG_PATH = LTX_VIDEO_REPO_DIR / "configs"
|
| 39 |
+
DEFAULT_CONFIG_FILE = BASE_CONFIG_PATH / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 40 |
+
LTX_REPO_ID = "Lightricks/LTX-Video"
|
| 41 |
+
RESULTS_DIR = Path("/app/output")
|
| 42 |
+
DEFAULT_FPS = 24.0
|
| 43 |
+
FRAMES_ALIGNMENT = 8
|
| 44 |
+
|
| 45 |
+
# --- CRITICAL: DEPENDENCY PATH INJECTION ---
|
| 46 |
+
def add_deps_to_path():
|
| 47 |
+
"""Adds the LTX repository directory to the Python system path for imports."""
|
| 48 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 49 |
+
if repo_path not in sys.path:
|
| 50 |
+
sys.path.insert(0, repo_path)
|
| 51 |
+
logging.info(f"LTX-Video repository added to sys.path: {repo_path}")
|
| 52 |
+
|
| 53 |
+
add_deps_to_path()
|
| 54 |
+
|
| 55 |
+
# --- PROJECT IMPORTS ---
|
| 56 |
try:
|
| 57 |
from api.gpu_manager import gpu_manager
|
| 58 |
+
from ltx_video.models.autoencoders.vae_encode import (normalize_latents, un_normalize_latents)
|
| 59 |
+
from ltx_video.pipelines.pipeline_ltx_video import (ConditioningItem, LTXMultiScalePipeline, adain_filter_latent, create_latent_upsampler, create_ltx_video_pipeline)
|
| 60 |
+
from ltx_video.utils.inference_utils import load_image_to_tensor_with_resize_and_crop
|
| 61 |
+
from managers.vae_manager import vae_manager_singleton
|
| 62 |
+
from tools.video_encode_tool import video_encode_tool_singleton
|
| 63 |
except ImportError as e:
|
| 64 |
+
logging.critical(f"A crucial LTX import failed. Check LTX-Video repo integrity. Error: {e}")
|
| 65 |
sys.exit(1)
|
| 66 |
|
| 67 |
+
# ==============================================================================
|
| 68 |
+
# --- UTILITY & HELPER FUNCTIONS ---
|
| 69 |
+
# ==============================================================================
|
| 70 |
+
|
| 71 |
+
def seed_everything(seed: int):
|
| 72 |
+
"""Sets the seed for reproducibility."""
|
| 73 |
+
random.seed(seed)
|
| 74 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 75 |
+
np.random.seed(seed)
|
| 76 |
+
torch.manual_seed(seed)
|
| 77 |
+
torch.cuda.manual_seed_all(seed)
|
| 78 |
+
torch.backends.cudnn.deterministic = True
|
| 79 |
+
torch.backends.cudnn.benchmark = False
|
| 80 |
+
|
| 81 |
+
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
|
| 82 |
+
"""Calculates symmetric padding values."""
|
| 83 |
+
pad_h = target_h - orig_h
|
| 84 |
+
pad_w = target_w - orig_w
|
| 85 |
+
pad_top = pad_h // 2
|
| 86 |
+
pad_bottom = pad_h - pad_top
|
| 87 |
+
pad_left = pad_w // 2
|
| 88 |
+
pad_right = pad_w - pad_left
|
| 89 |
+
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 90 |
+
|
| 91 |
+
def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
|
| 92 |
+
"""Logs detailed debug information about a PyTorch tensor."""
|
| 93 |
+
if not isinstance(tensor, torch.Tensor):
|
| 94 |
+
logging.debug(f"'{name}' is not a tensor.")
|
| 95 |
+
return
|
| 96 |
+
|
| 97 |
+
info_str = (
|
| 98 |
+
f"--- Tensor: {name} ---\n"
|
| 99 |
+
f" - Shape: {tuple(tensor.shape)}\n"
|
| 100 |
+
f" - Dtype: {tensor.dtype}\n"
|
| 101 |
+
f" - Device: {tensor.device}\n"
|
| 102 |
+
)
|
| 103 |
+
if tensor.numel() > 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
try:
|
| 105 |
+
info_str += (
|
| 106 |
+
f" - Min: {tensor.min().item():.4f} | "
|
| 107 |
+
f"Max: {tensor.max().item():.4f} | "
|
| 108 |
+
f"Mean: {tensor.mean().item():.4f}\n"
|
| 109 |
+
)
|
| 110 |
+
except Exception:
|
| 111 |
+
pass # Fails on some dtypes
|
| 112 |
+
logging.debug(info_str + "----------------------")
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
# ==============================================================================
|
| 116 |
+
# --- VIDEO SERVICE CLASS ---
|
| 117 |
+
# ==============================================================================
|
| 118 |
+
|
| 119 |
+
class VideoService:
|
| 120 |
+
"""Backend service for orchestrating video generation using the LTX-Video pipeline."""
|
| 121 |
+
|
| 122 |
+
def __init__(self):
|
| 123 |
+
"""Initializes the service with dedicated GPU logic for main pipeline and VAE."""
|
| 124 |
+
t0 = time.perf_counter()
|
| 125 |
+
logging.info("Initializing VideoService...")
|
| 126 |
+
RESULTS_DIR.mkdir(parents=True, exist_ok=True)
|
| 127 |
+
|
| 128 |
+
target_main_device_str = str(gpu_manager.get_ltx_device())
|
| 129 |
+
target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
|
| 130 |
+
|
| 131 |
+
logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")
|
| 132 |
+
|
| 133 |
+
self.config = self._load_config()
|
| 134 |
+
self.pipeline, self.latent_upsampler = self._load_models()
|
| 135 |
+
|
| 136 |
+
self.main_device = torch.device("cpu")
|
| 137 |
+
self.vae_device = torch.device("cpu")
|
| 138 |
+
|
| 139 |
+
self.move_to_device(main_device_str=target_main_device_str, vae_device_str=target_vae_device_str)
|
| 140 |
+
|
| 141 |
+
self._apply_precision_policy()
|
| 142 |
+
vae_manager_singleton.attach_pipeline(
|
| 143 |
+
self.pipeline,
|
| 144 |
+
device=self.vae_device,
|
| 145 |
+
autocast_dtype=self.runtime_autocast_dtype
|
| 146 |
+
)
|
| 147 |
+
self._tmp_dirs = set()
|
| 148 |
+
logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s")
|
| 149 |
+
|
| 150 |
+
# ==========================================================================
|
| 151 |
+
# --- LIFECYCLE & MODEL MANAGEMENT ---
|
| 152 |
+
# ==========================================================================
|
| 153 |
+
|
| 154 |
+
def _load_config(self) -> Dict:
|
| 155 |
+
"""Loads the YAML configuration file."""
|
| 156 |
+
config_path = DEFAULT_CONFIG_FILE
|
| 157 |
+
logging.info(f"Loading config from: {config_path}")
|
| 158 |
+
with open(config_path, "r") as file:
|
| 159 |
+
return yaml.safe_load(file)
|
| 160 |
+
|
| 161 |
+
def _load_models(self) -> Tuple[LTXMultiScalePipeline, Optional[torch.nn.Module]]:
|
| 162 |
+
"""Loads models from cache to CPU."""
|
| 163 |
+
t0 = time.perf_counter()
|
| 164 |
+
logging.info("Loading LTX models from cache to CPU...")
|
| 165 |
+
|
| 166 |
+
pipeline = create_ltx_video_pipeline(
|
| 167 |
+
ckpt_path=self.config["checkpoint_path"],
|
| 168 |
+
precision=self.config["precision"],
|
| 169 |
+
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 170 |
+
sampler=self.config["sampler"],
|
| 171 |
+
device="cpu",
|
| 172 |
+
enhance_prompt=False,
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
latent_upsampler = None
|
| 176 |
+
if self.config.get("spatial_upscaler_model_path"):
|
| 177 |
+
spatial_path = self.config["spatial_upscaler_model_path"]
|
| 178 |
+
latent_upsampler = create_latent_upsampler(spatial_path, device="cpu")
|
| 179 |
+
|
| 180 |
+
logging.info(f"Models loaded on CPU in {time.perf_counter()-t0:.2f}s")
|
| 181 |
+
return pipeline, latent_upsampler
|
| 182 |
+
|
| 183 |
+
def move_to_device(self, main_device_str: str, vae_device_str: str):
|
| 184 |
+
"""Moves pipeline components to their target devices."""
|
| 185 |
+
target_main_device = torch.device(main_device_str)
|
| 186 |
+
target_vae_device = torch.device(vae_device_str)
|
| 187 |
+
|
| 188 |
+
logging.info(f"Moving LTX models -> Main Pipeline: {target_main_device}, VAE: {target_vae_device}")
|
| 189 |
+
|
| 190 |
+
self.main_device = target_main_device
|
| 191 |
+
self.pipeline.to(self.main_device)
|
| 192 |
+
|
| 193 |
+
self.vae_device = target_vae_device
|
| 194 |
+
self.pipeline.vae.to(self.vae_device)
|
| 195 |
+
|
| 196 |
+
if self.latent_upsampler:
|
| 197 |
+
self.latent_upsampler.to(self.main_device)
|
| 198 |
|
| 199 |
+
logging.info("LTX models successfully moved to target devices.")
|
| 200 |
+
|
| 201 |
+
def move_to_cpu(self):
|
| 202 |
+
"""Moves all LTX components to CPU to free VRAM."""
|
| 203 |
+
self.move_to_device(main_device_str="cpu", vae_device_str="cpu")
|
| 204 |
+
if torch.cuda.is_available():
|
| 205 |
+
torch.cuda.empty_cache()
|
| 206 |
+
|
| 207 |
+
def finalize(self):
|
| 208 |
+
"""Cleans up GPU memory after a generation task."""
|
| 209 |
+
gc.collect()
|
| 210 |
+
if torch.cuda.is_available():
|
| 211 |
+
torch.cuda.empty_cache()
|
| 212 |
+
try: torch.cuda.ipc_collect();
|
| 213 |
+
except Exception: pass
|
| 214 |
+
|
| 215 |
+
# ==========================================================================
|
| 216 |
+
# --- PUBLIC ORCHESTRATORS ---
|
| 217 |
+
# ==========================================================================
|
| 218 |
+
|
| 219 |
+
def generate_narrative_low(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
|
| 220 |
+
"""[ORCHESTRATOR] Generates a video from a multi-line prompt (sequence of scenes)."""
|
| 221 |
+
logging.info("Starting narrative low-res generation...")
|
| 222 |
+
used_seed = self._resolve_seed(kwargs.get("seed"))
|
| 223 |
+
seed_everything(used_seed)
|
| 224 |
+
|
| 225 |
+
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
|
| 226 |
+
if not prompt_list:
|
| 227 |
+
raise ValueError("Prompt is empty or contains no valid lines.")
|
| 228 |
+
|
| 229 |
+
num_chunks = len(prompt_list)
|
| 230 |
+
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
|
| 231 |
+
frames_per_chunk = (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT
|
| 232 |
+
overlap_frames = self.config.get("overlap_frames", 8)
|
| 233 |
+
|
| 234 |
+
all_latents_paths = []
|
| 235 |
+
overlap_condition_item = None
|
| 236 |
+
|
| 237 |
try:
|
| 238 |
+
for i, chunk_prompt in enumerate(prompt_list):
|
| 239 |
+
logging.info(f"Generating narrative chunk {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
|
| 240 |
+
|
| 241 |
+
current_frames = frames_per_chunk
|
| 242 |
+
if i > 0: current_frames += overlap_frames
|
| 243 |
+
|
| 244 |
+
current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
|
| 245 |
+
if overlap_condition_item: current_conditions.append(overlap_condition_item)
|
| 246 |
+
|
| 247 |
+
chunk_latents = self._generate_single_chunk_low(
|
| 248 |
+
prompt=chunk_prompt,
|
| 249 |
+
num_frames=current_frames,
|
| 250 |
+
seed=used_seed + i,
|
| 251 |
+
conditioning_items=current_conditions,
|
| 252 |
+
**kwargs
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for chunk {i+1}.")
|
| 256 |
+
|
| 257 |
+
if i < num_chunks - 1:
|
| 258 |
+
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
|
| 259 |
+
overlap_condition_item = ConditioningItem(media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0)
|
| 260 |
+
|
| 261 |
+
if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
|
| 262 |
+
|
| 263 |
+
chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
|
| 264 |
+
torch.save(chunk_latents.cpu(), chunk_path)
|
| 265 |
+
all_latents_paths.append(chunk_path)
|
| 266 |
|
| 267 |
+
return self._finalize_generation(all_latents_paths, "narrative_video", used_seed)
|
| 268 |
+
|
| 269 |
+
except Exception as e:
|
| 270 |
+
logging.error(f"Error during narrative generation: {e}", exc_info=True)
|
| 271 |
+
return None, None, None
|
| 272 |
finally:
|
| 273 |
+
for path in all_latents_paths:
|
| 274 |
+
if path.exists(): path.unlink()
|
| 275 |
+
self.finalize()
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def generate_single_low(self, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
|
| 279 |
+
"""[ORCHESTRATOR] Generates a video from a single prompt in one go."""
|
| 280 |
+
logging.info("Starting single-prompt low-res generation...")
|
| 281 |
+
used_seed = self._resolve_seed(kwargs.get("seed"))
|
| 282 |
+
seed_everything(used_seed)
|
| 283 |
+
|
| 284 |
+
try:
|
| 285 |
+
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0), min_frames=9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
+
final_latents = self._generate_single_chunk_low(
|
| 288 |
+
num_frames=total_frames,
|
| 289 |
+
seed=used_seed,
|
| 290 |
+
conditioning_items=kwargs.get("initial_conditions", []),
|
| 291 |
+
**kwargs
|
| 292 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
+
if final_latents is None: raise RuntimeError("Failed to generate latents.")
|
| 295 |
+
|
| 296 |
+
latents_path = RESULTS_DIR / f"temp_single_{used_seed}.pt"
|
| 297 |
+
torch.save(final_latents.cpu(), latents_path)
|
| 298 |
+
return self._finalize_generation([latents_path], "single_video", used_seed)
|
| 299 |
+
|
| 300 |
+
except Exception as e:
|
| 301 |
+
logging.error(f"Error during single generation: {e}", exc_info=True)
|
| 302 |
+
return None, None, None
|
| 303 |
+
finally:
|
| 304 |
+
self.finalize()
|
| 305 |
+
|
| 306 |
+
# ==========================================================================
|
| 307 |
+
# --- INTERNAL WORKER & HELPER METHODS ---
|
| 308 |
+
# ==========================================================================
|
| 309 |
+
|
| 310 |
+
def _generate_single_chunk_low(
|
| 311 |
+
self, prompt: str, negative_prompt: str, height: int, width: int, num_frames: int, seed: int,
|
| 312 |
+
conditioning_items: List[ConditioningItem], ltx_configs_override: Optional[Dict], **kwargs
|
| 313 |
+
) -> Optional[torch.Tensor]:
|
| 314 |
+
"""[WORKER] Generates a single chunk of latents. This is the core generation unit."""
|
| 315 |
+
height_padded, width_padded = (self._align(d) for d in (height, width))
|
| 316 |
+
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 317 |
+
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 318 |
+
|
| 319 |
+
downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
|
| 320 |
+
downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
|
| 321 |
+
|
| 322 |
+
first_pass_config = self.config.get("first_pass", {}).copy()
|
| 323 |
+
if ltx_configs_override:
|
| 324 |
+
first_pass_config.update(self._prepare_guidance_overrides(ltx_configs_override))
|
| 325 |
+
|
| 326 |
+
pipeline_kwargs = {
|
| 327 |
+
"prompt": prompt, "negative_prompt": negative_prompt,
|
| 328 |
+
"height": downscaled_height, "width": downscaled_width,
|
| 329 |
+
"num_frames": num_frames, "frame_rate": DEFAULT_FPS,
|
| 330 |
+
"generator": torch.Generator(device=self.main_device).manual_seed(seed),
|
| 331 |
+
"output_type": "latent", "conditioning_items": conditioning_items,
|
| 332 |
+
**first_pass_config
|
| 333 |
+
}
|
| 334 |
+
|
| 335 |
+
with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
|
| 336 |
+
latents_raw = self.pipeline(**pipeline_kwargs).images
|
| 337 |
+
|
| 338 |
+
log_tensor_info(latents_raw, f"Raw Latents for '{prompt[:40]}...'")
|
| 339 |
+
return latents_raw
|
| 340 |
+
|
| 341 |
+
def _finalize_generation(self, latents_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
|
| 342 |
+
"""Loads latents, concatenates, decodes to video, and saves both."""
|
| 343 |
+
logging.info("Finalizing generation: decoding latents to video.")
|
| 344 |
+
all_tensors_cpu = [torch.load(p) for p in latents_paths]
|
| 345 |
+
final_latents = torch.cat(all_tensors_cpu, dim=2)
|
| 346 |
+
|
| 347 |
+
final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
|
| 348 |
+
torch.save(final_latents, final_latents_path)
|
| 349 |
+
logging.info(f"Final latents saved to: {final_latents_path}")
|
| 350 |
+
|
| 351 |
+
# The decode method in vae_manager now handles moving the tensor to the correct VAE device.
|
| 352 |
+
pixel_tensor = vae_manager_singleton.decode(
|
| 353 |
+
final_latents,
|
| 354 |
+
decode_timestep=float(self.config.get("decode_timestep", 0.05))
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
|
| 358 |
+
return str(video_path), str(final_latents_path), seed
|
| 359 |
+
|
| 360 |
+
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
|
| 361 |
+
"""Prepares a list of ConditioningItem objects from file paths or tensors."""
|
| 362 |
+
if not items_list: return []
|
| 363 |
+
height_padded, width_padded = self._align(height), self._align(width)
|
| 364 |
+
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 365 |
+
|
| 366 |
+
conditioning_items = []
|
| 367 |
+
for media, frame, weight in items_list:
|
| 368 |
+
tensor = self._prepare_conditioning_tensor(media, height, width, padding_values)
|
| 369 |
+
safe_frame = max(0, min(int(frame), num_frames - 1))
|
| 370 |
+
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 371 |
+
return conditioning_items
|
| 372 |
+
|
| 373 |
+
def _prepare_conditioning_tensor(self, media_path: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
|
| 374 |
+
"""Loads and processes an image to be a conditioning tensor."""
|
| 375 |
+
tensor = load_image_to_tensor_with_resize_and_crop(media_path, height, width)
|
| 376 |
+
tensor = torch.nn.functional.pad(tensor, padding)
|
| 377 |
+
# Conditioning tensors are needed on the main device for the transformer pass
|
| 378 |
+
return tensor.to(self.main_device, dtype=self.runtime_autocast_dtype)
|
| 379 |
+
|
| 380 |
+
def _prepare_guidance_overrides(self, ltx_configs: Dict) -> Dict:
|
| 381 |
+
"""Parses UI presets for guidance into pipeline-compatible arguments."""
|
| 382 |
+
overrides = {}
|
| 383 |
+
preset = ltx_configs.get("guidance_preset", "Padrão (Recomendado)")
|
| 384 |
+
|
| 385 |
+
if preset == "Agressivo":
|
| 386 |
+
overrides["guidance_scale"] = [1, 2, 8, 12, 8, 2, 1]
|
| 387 |
+
overrides["stg_scale"] = [0, 0, 5, 6, 5, 3, 2]
|
| 388 |
+
elif preset == "Suave":
|
| 389 |
+
overrides["guidance_scale"] = [1, 1, 4, 5, 4, 1, 1]
|
| 390 |
+
overrides["stg_scale"] = [0, 0, 2, 2, 2, 1, 0]
|
| 391 |
+
elif preset == "Customizado":
|
| 392 |
+
try:
|
| 393 |
+
overrides["guidance_scale"] = json.loads(ltx_configs["guidance_scale_list"])
|
| 394 |
+
overrides["stg_scale"] = json.loads(ltx_configs["stg_scale_list"])
|
| 395 |
+
except (json.JSONDecodeError, KeyError) as e:
|
| 396 |
+
logging.warning(f"Failed to parse custom guidance values: {e}. Falling back to defaults.")
|
| 397 |
+
|
| 398 |
+
if overrides: logging.info(f"Applying '{preset}' guidance preset overrides.")
|
| 399 |
+
return overrides
|
| 400 |
+
|
| 401 |
+
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
|
| 402 |
+
"""Saves a pixel tensor (on CPU) to an MP4 file."""
|
| 403 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 404 |
+
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
|
| 405 |
+
video_encode_tool_singleton.save_video_from_tensor(
|
| 406 |
+
pixel_tensor, temp_path, fps=DEFAULT_FPS
|
| 407 |
+
)
|
| 408 |
+
final_path = RESULTS_DIR / f"{base_filename}.mp4"
|
| 409 |
+
shutil.move(temp_path, final_path)
|
| 410 |
+
logging.info(f"Video saved successfully to: {final_path}")
|
| 411 |
+
return final_path
|
| 412 |
|
| 413 |
+
def _apply_precision_policy(self):
|
| 414 |
+
"""Sets the autocast dtype based on the configuration file."""
|
| 415 |
+
precision = str(self.config.get("precision", "bfloat16")).lower()
|
| 416 |
+
if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
|
| 417 |
+
elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
|
| 418 |
+
else: self.runtime_autocast_dtype = torch.float32
|
| 419 |
+
logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")
|
| 420 |
+
|
| 421 |
+
def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT) -> int:
|
| 422 |
+
"""Aligns a dimension to the nearest multiple of `alignment`."""
|
| 423 |
+
return ((dim - 1) // alignment + 1) * alignment
|
| 424 |
+
|
| 425 |
+
def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
|
| 426 |
+
"""Calculates total frames based on duration, ensuring alignment."""
|
| 427 |
+
num_frames = int(round(duration_s * DEFAULT_FPS))
|
| 428 |
+
aligned_frames = self._align(num_frames)
|
| 429 |
+
return max(aligned_frames + 1, min_frames)
|
| 430 |
+
|
| 431 |
+
def _resolve_seed(self, seed: Optional[int]) -> int:
|
| 432 |
+
"""Returns the given seed or generates a new random one."""
|
| 433 |
+
return random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 434 |
+
|
| 435 |
+
# ==============================================================================
|
| 436 |
+
# --- SINGLETON INSTANTIATION ---
|
| 437 |
+
# ==============================================================================
|
| 438 |
try:
|
| 439 |
+
video_generation_service = VideoService()
|
| 440 |
+
logging.info("Global VideoService instance created successfully.")
|
| 441 |
except Exception as e:
|
| 442 |
+
logging.critical(f"Failed to initialize VideoService: {e}", exc_info=True)
|
| 443 |
+
sys.exit(1)
|
|
|