Test3 / api /seedvr_server.py
Eueuiaa's picture
Update api/seedvr_server.py
94cdf7d verified
raw
history blame
12.4 kB
# api/seedvr_server.py
import os
import sys
import time
import subprocess
import queue
import multiprocessing as mp
from pathlib import Path
from typing import Optional, Callable
from huggingface_hub import hf_hub_download
# -------------------------------------------------------------
# 1. CONFIGURAÇÃO DE AMBIENTE E CUDA
# -------------------------------------------------------------
# Garante o uso seguro de CUDA com multiprocessing para estabilidade.
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn', force=True)
# Configuração de alocação de memória da VRAM
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "backend:cudaMallocAsync")
# Adiciona dinamicamente o caminho do repositório clonado ao sys.path.
SEEDVR_REPO_PATH = Path(os.getenv("SEEDVR_ROOT", "/data/SeedVR"))
if str(SEEDVR_REPO_PATH) not in sys.path:
sys.path.insert(0, str(SEEDVR_REPO_PATH))
# Importações pesadas (torch, etc.) são feitas após a configuração do ambiente.
import torch
import cv2
import numpy as np
from datetime import datetime
# -------------------------------------------------------------
# 2. FUNÇÕES AUXILIARES DE PROCESSAMENTO (Workers e I/O)
# -------------------------------------------------------------
def extract_frames_from_video(video_path, debug=False, skip_first_frames=0, load_cap=None):
"""Extrai quadros de um vídeo e os converte para o formato de tensor."""
if debug: print(f"🎬 Extraindo frames de: {video_path}")
if not os.path.exists(video_path): raise FileNotFoundError(f"Arquivo de vídeo não encontrado: {video_path}")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): raise ValueError(f"Não foi possível abrir o arquivo de vídeo: {video_path}")
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if debug: print(f"📊 Info do vídeo: {frame_count} frames, {fps:.2f} FPS")
frames = []
frames_loaded = 0
for i in range(frame_count):
ret, frame = cap.read()
if not ret: break
if i < skip_first_frames: continue
if load_cap and frames_loaded >= load_cap: break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame.astype(np.float32) / 255.0)
frames_loaded += 1
cap.release()
if not frames: raise ValueError(f"Nenhum frame foi extraído do vídeo: {video_path}")
if debug: print(f"✅ {len(frames)} frames extraídos com sucesso.")
return torch.from_numpy(np.stack(frames)).to(torch.float16), fps
def save_frames_to_video(frames_tensor, output_path, fps=30.0, debug=False):
"""Salva um tensor de quadros em um arquivo de vídeo."""
if debug: print(f"🎬 Salvando {frames_tensor.shape[0]} frames em: {output_path}")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
frames_np = (frames_tensor.cpu().numpy() * 255.0).astype(np.uint8)
T, H, W, _ = frames_np.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (W, H))
if not out.isOpened(): raise ValueError(f"Não foi possível criar o arquivo de vídeo: {output_path}")
for frame in frames_np:
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
out.release()
if debug: print(f"✅ Vídeo salvo com sucesso: {output_path}")
def _worker_process(proc_idx, device_id, frames_np, shared_args, return_queue, progress_queue=None):
"""Processo filho (worker) que executa o upscaling em uma GPU dedicada."""
os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id)
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "backend:cudaMallocAsync")
import torch
from src.core.model_manager import configure_runner
from src.core.generation import generation_loop
try:
frames_tensor = torch.from_numpy(frames_np).to(torch.float16)
callback = (lambda b, t, _, m: progress_queue.put((proc_idx, b, t, m))) if progress_queue else None
runner = configure_runner(shared_args["model"], shared_args["model_dir"], shared_args["preserve_vram"], shared_args["debug"])
result_tensor = generation_loop(
runner=runner, images=frames_tensor, cfg_scale=1.0, seed=shared_args["seed"],
res_w=shared_args["resolution"], batch_size=shared_args["batch_size"],
preserve_vram=shared_args["preserve_vram"], temporal_overlap=0,
debug=shared_args["debug"], progress_callback=callback
)
return_queue.put((proc_idx, result_tensor.cpu().numpy()))
except Exception as e:
import traceback
error_msg = f"ERRO no worker {proc_idx}: {e}\n{traceback.format_exc()}"
print(error_msg)
if progress_queue: progress_queue.put((proc_idx, -1, -1, error_msg))
return_queue.put((proc_idx, error_msg))
# -------------------------------------------------------------
# 3. CLASSE DO SERVIDOR PRINCIPAL
# -------------------------------------------------------------
class SeedVRServer:
def __init__(self, **kwargs):
"""Inicializa o servidor, define os caminhos e prepara o ambiente."""
print("⚙️ SeedVRServer inicializando...")
self.SEEDVR_ROOT = SEEDVR_REPO_PATH
self.CKPTS_ROOT = Path("/data/seedvr_models_fp16")
self.OUTPUT_ROOT = Path(os.getenv("OUTPUT_ROOT", "/app/outputs"))
self.INPUT_ROOT = Path(os.getenv("INPUT_ROOT", "/app/inputs"))
self.HF_HOME_CACHE = Path(os.getenv("HF_HOME", "/data/.cache/huggingface"))
self.REPO_URL = os.getenv("SEEDVR_GIT_URL", "https://github.com/numz/ComfyUI-SeedVR2_VideoUpscaler")
self.NUM_GPUS_TOTAL = torch.cuda.device_count()
for p in [self.CKPTS_ROOT, self.OUTPUT_ROOT, self.INPUT_ROOT, self.HF_HOME_CACHE]:
p.mkdir(parents=True, exist_ok=True)
self.setup_dependencies()
print("📦 SeedVRServer pronto.")
def setup_dependencies(self):
"""Garante que o repositório e os modelos estão presentes."""
# Clona o repositório do SeedVR se não existir
if not (self.SEEDVR_ROOT / ".git").exists():
print(f"[SeedVRServer] Clonando repositório para {self.SEEDVR_ROOT}...")
subprocess.run(["git", "clone", "--depth", "1", self.REPO_URL, str(self.SEEDVR_ROOT)], check=True)
else:
print("[SeedVRServer] Repositório SeedVR já existe.")
# Baixa os checkpoints do Hugging Face se não existirem
print(f"[SeedVRServer] Verificando checkpoints em {self.CKPTS_ROOT}...")
model_files = {
"seedvr2_ema_7b_sharp_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
"ema_vae_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses"
}
for filename, repo_id in model_files.items():
if not (self.CKPTS_ROOT / filename).exists():
print(f"Baixando {filename}...")
from huggingface_hub import hf_hub_download
hf_hub_download(
repo_id=repo_id, filename=filename, local_dir=str(self.CKPTS_ROOT),
cache_dir=str(self.HF_HOME_CACHE), token=os.getenv("HF_TOKEN")
)
print("[SeedVRServer] Checkpoints estão no local correto.")
def run_inference(
self,
file_path: str, *,
seed: int,
resolution: int,
batch_size: int,
model: str = "seedvr2_ema_7b_sharp_fp16.safetensors",
fps: Optional[float] = None,
debug: bool = True,
preserve_vram: bool = True,
progress: Optional[Callable] = None
) -> str:
"""
Executa o pipeline completo de upscaling de vídeo e retorna o caminho do arquivo de saída.
"""
if progress: progress(0.01, "⌛ Inicializando...")
# --- 1. Extração de Frames ---
if progress: progress(0.05, "🎬 Extraindo frames do vídeo...")
frames_tensor, original_fps = extract_frames_from_video(file_path, debug)
# --- 2. Preparação do Processamento Multi-GPU ---
device_list = list(range(self.NUM_GPUS_TOTAL))
num_devices = len(device_list)
chunks = torch.chunk(frames_tensor, num_devices, dim=0)
manager = mp.Manager()
return_queue = manager.Queue()
progress_queue = manager.Queue() if progress else None
shared_args = {
"model": model, "model_dir": str(self.CKPTS_ROOT), "preserve_vram": preserve_vram,
"debug": debug, "seed": seed, "resolution": resolution, "batch_size": batch_size
}
# --- 3. Inicia os Workers ---
if progress: progress(0.1, f"🚀 Iniciando geração em {num_devices} GPUs...")
workers = []
for idx, device_id in enumerate(device_list):
p = mp.Process(target=_worker_process, args=(idx, device_id, chunks[idx].cpu().numpy(), shared_args, return_queue, progress_queue))
p.start()
workers.append(p)
# --- 4. Coleta de Resultados e Monitoramento de Progresso ---
results_np = [None] * num_devices
finished_workers = 0
worker_progress = [0.0] * num_devices
while finished_workers < num_devices:
# Atualiza a barra de progresso com informações da fila
if progress_queue:
while not progress_queue.empty():
try:
p_idx, b_idx, b_total, msg = progress_queue.get_nowait()
if b_idx == -1: raise RuntimeError(f"Erro no Worker {p_idx}: {msg}")
if b_total > 0: worker_progress[p_idx] = b_idx / b_total
total_progress = sum(worker_progress) / num_devices
progress(0.1 + total_progress * 0.85, desc=f"GPU {p_idx+1}/{num_devices}: {msg}")
except queue.Empty: pass
# Verifica se algum worker terminou
try:
proc_idx, result = return_queue.get(timeout=0.2)
if isinstance(result, str): raise RuntimeError(f"Worker {proc_idx} falhou: {result}")
results_np[proc_idx] = result
worker_progress[proc_idx] = 1.0
finished_workers += 1
except queue.Empty: pass
for p in workers: p.join()
if any(r is None for r in results_np):
raise RuntimeError("Um ou mais workers falharam ao retornar um resultado.")
# --- 5. Combina os resultados e salva o vídeo final ---
result_tensor = torch.from_numpy(np.concatenate(results_np, axis=0)).to(torch.float16)
if progress: progress(0.95, "💾 Salvando o vídeo final...")
out_dir = self.OUTPUT_ROOT / f"run_{int(time.time())}_{Path(file_path).stem}"
out_dir.mkdir(parents=True, exist_ok=True)
output_filepath = out_dir / f"result_{Path(file_path).stem}.mp4"
final_fps = fps if fps and fps > 0 else original_fps
save_frames_to_video(result_tensor, str(output_filepath), final_fps, debug)
print(f"✅ Vídeo salvo com sucesso em: {output_filepath}")
return str(output_filepath)
# -------------------------------------------------------------
# 4. PONTO DE ENTRADA PARA EXECUÇÃO
# -------------------------------------------------------------
if __name__ == "__main__":
# Bloco para testes ou inicialização autônoma.
print("🚀 Executando o servidor SeedVR em modo autônomo...")
try:
server = SeedVRServer()
print("✅ Servidor inicializado com sucesso. Pronto para receber chamadas.")
# Exemplo de como chamar a inferência (requer um arquivo de vídeo):
# input_video = "caminho/para/seu/video.mp4"
# if os.path.exists(input_video):
# server.run_inference(
# file_path=input_video,
# seed=42,
# resolution=1072,
# batch_size=4,
# progress=lambda p, desc: print(f"Progresso: {p*100:.1f}% - {desc}")
# )
# else:
# print(f"Vídeo de teste não encontrado em '{input_video}'. Pulei a execução da inferência.")
except Exception as e:
print(f"❌ Falha ao inicializar o servidor: {e}")
import traceback
traceback.print_exc()
sys.exit(1)