Update api/ltx_server.py
Browse files- api/ltx_server.py +89 -25
api/ltx_server.py
CHANGED
|
@@ -577,39 +577,103 @@ class VideoService:
|
|
| 577 |
latents = None
|
| 578 |
multi_scale_pipeline = None
|
| 579 |
|
|
|
|
|
|
|
| 580 |
try:
|
| 581 |
if improve_texture:
|
| 582 |
if not self.latent_upsampler:
|
| 583 |
raise ValueError("Upscaler espacial não carregado.")
|
| 584 |
-
|
| 585 |
-
|
|
|
|
|
|
|
| 586 |
first_pass_args = self.config.get("first_pass", {}).copy()
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 601 |
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
|
| 602 |
with ctx:
|
| 603 |
-
|
| 604 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 605 |
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 613 |
else:
|
| 614 |
single_pass_kwargs = call_kwargs.copy()
|
| 615 |
first_pass_config = self.config.get("first_pass", {})
|
|
|
|
| 577 |
latents = None
|
| 578 |
multi_scale_pipeline = None
|
| 579 |
|
| 580 |
+
# ltx_server.py (dentro da função generate)
|
| 581 |
+
|
| 582 |
try:
|
| 583 |
if improve_texture:
|
| 584 |
if not self.latent_upsampler:
|
| 585 |
raise ValueError("Upscaler espacial não carregado.")
|
| 586 |
+
|
| 587 |
+
print("[DEBUG] Multi-escala: Iniciando Passo 1 (geração de latentes base).")
|
| 588 |
+
|
| 589 |
+
# 1. Configurar e executar o primeiro passo
|
| 590 |
first_pass_args = self.config.get("first_pass", {}).copy()
|
| 591 |
+
first_pass_kwargs = call_kwargs.copy()
|
| 592 |
+
first_pass_kwargs.update({
|
| 593 |
+
"guidance_scale": float(guidance_scale),
|
| 594 |
+
"stg_scale": first_pass_args.get("stg_scale"),
|
| 595 |
+
"rescaling_scale": first_pass_args.get("rescaling_scale"),
|
| 596 |
+
"skip_block_list": first_pass_args.get("skip_block_list"),
|
| 597 |
+
})
|
| 598 |
+
schedule = first_pass_args.get("timesteps") or first_pass_args.get("guidance_timesteps")
|
| 599 |
+
if schedule:
|
| 600 |
+
first_pass_kwargs["timesteps"] = schedule
|
| 601 |
+
first_pass_kwargs["guidance_timesteps"] = schedule
|
| 602 |
+
|
| 603 |
+
downscale_factor = self.config.get("downscale_factor", 2)
|
| 604 |
+
original_height = first_pass_kwargs["height"]
|
| 605 |
+
original_width = first_pass_kwargs["width"]
|
| 606 |
+
divisor = 24
|
| 607 |
+
|
| 608 |
+
target_height_p1 = original_height // downscale_factor
|
| 609 |
+
height_p1 = round(target_height_p1 / divisor) * divisor
|
| 610 |
+
if height_p1 == 0: height_p1 = divisor
|
| 611 |
+
first_pass_kwargs["height"] = height_p1
|
| 612 |
+
|
| 613 |
+
target_width_p1 = original_width // downscale_factor
|
| 614 |
+
width_p1 = round(target_width_p1 / divisor) * divisor
|
| 615 |
+
if width_p1 == 0: width_p1 = divisor
|
| 616 |
+
first_pass_kwargs["width"] = width_p1
|
| 617 |
+
|
| 618 |
+
print(f"[DEBUG] Passo 1: Dimensões reduzidas e ajustadas para {height_p1}x{width_p1}")
|
| 619 |
+
|
| 620 |
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
|
| 621 |
with ctx:
|
| 622 |
+
first_pass_result = self.pipeline(**first_pass_kwargs)
|
| 623 |
+
|
| 624 |
+
latents_low_res = first_pass_result.latents if hasattr(first_pass_result, "latents") else first_pass_result
|
| 625 |
+
log_tensor_info(latents_low_res, "Latentes (Passo 1)")
|
| 626 |
+
|
| 627 |
+
del first_pass_result
|
| 628 |
+
gc.collect()
|
| 629 |
+
if self.device == "cuda": torch.cuda.empty_cache()
|
| 630 |
|
| 631 |
+
# 2. Upscale dos latentes
|
| 632 |
+
print("[DEBUG] Multi-escala: Fazendo upscale dos latentes com latent_upsampler.")
|
| 633 |
+
with ctx:
|
| 634 |
+
# Chamada posicional confirmada pelo código-fonte
|
| 635 |
+
latents_high_res = self.latent_upsampler(latents_low_res)
|
| 636 |
+
|
| 637 |
+
log_tensor_info(latents_high_res, "Latentes (Pós-Upscale)")
|
| 638 |
+
del latents_low_res
|
| 639 |
+
gc.collect()
|
| 640 |
+
if self.device == "cuda": torch.cuda.empty_cache()
|
| 641 |
+
|
| 642 |
+
# 3. Configurar e executar o segundo passo
|
| 643 |
+
print("[DEBUG] Multi-escala: Iniciando Passo 2 (refinamento em alta resolução).")
|
| 644 |
+
second_pass_args = self.config.get("second_pass", {}).copy()
|
| 645 |
+
second_pass_kwargs = call_kwargs.copy()
|
| 646 |
+
|
| 647 |
+
# ==================== LÓGICA DE DIMENSÃO FINAL ====================
|
| 648 |
+
# As dimensões do Passo 2 DEVEM ser o dobro das dimensões do Passo 1,
|
| 649 |
+
# para corresponder à saída do upsampler.
|
| 650 |
+
height_p2 = height_p1 * 2
|
| 651 |
+
width_p2 = width_p1 * 2
|
| 652 |
+
second_pass_kwargs["height"] = height_p2
|
| 653 |
+
second_pass_kwargs["width"] = width_p2
|
| 654 |
+
print(f"[DEBUG] Passo 2: Dimensões definidas para {height_p2}x{width_p2} para corresponder ao upscale.")
|
| 655 |
+
# =================================================================
|
| 656 |
+
|
| 657 |
+
second_pass_kwargs.update({
|
| 658 |
+
"guidance_scale": float(guidance_scale),
|
| 659 |
+
"stg_scale": second_pass_args.get("stg_scale"),
|
| 660 |
+
"rescaling_scale": second_pass_args.get("rescaling_scale"),
|
| 661 |
+
"skip_block_list": second_pass_args.get("skip_block_list"),
|
| 662 |
+
})
|
| 663 |
+
|
| 664 |
+
schedule_p2 = second_pass_args.get("timesteps") or second_pass_args.get("guidance_timesteps")
|
| 665 |
+
if schedule_p2:
|
| 666 |
+
second_pass_kwargs["timesteps"] = schedule_p2
|
| 667 |
+
second_pass_kwargs["guidance_timesteps"] = schedule_p2
|
| 668 |
+
|
| 669 |
+
second_pass_kwargs["latents"] = latents_high_res
|
| 670 |
+
|
| 671 |
+
with ctx:
|
| 672 |
+
second_pass_result = self.pipeline(**second_pass_kwargs)
|
| 673 |
+
|
| 674 |
+
latents = second_pass_result.latents if hasattr(second_pass_result, "latents") else second_pass_result
|
| 675 |
+
log_tensor_info(latents, "Latentes Finais (Passo 2)")
|
| 676 |
+
|
| 677 |
else:
|
| 678 |
single_pass_kwargs = call_kwargs.copy()
|
| 679 |
first_pass_config = self.config.get("first_pass", {})
|