Spaces:
Build error
Build error
| import logging | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| BatchNorm2d = nn.BatchNorm2d | |
| BN_MOMENTUM = 0.01 | |
| logger = logging.getLogger(__name__) | |
| def conv3x3(in_planes, out_planes, stride=1): | |
| """3x3 convolution with padding""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
| class BasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(BasicBlock, self).__init__() | |
| self.conv1 = conv3x3(inplanes, planes, stride) | |
| self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
| self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
| self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
| self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) | |
| self.bn3 = BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class HighResolutionModule(nn.Module): | |
| def __init__( | |
| self, num_branches, blocks, num_blocks, num_inchannels, num_channels, fuse_method, multi_scale_output=True | |
| ): | |
| super(HighResolutionModule, self).__init__() | |
| # self._check_branches( | |
| # num_branches, blocks, num_blocks, num_inchannels, num_channels) | |
| self.num_inchannels = num_inchannels | |
| self.fuse_method = fuse_method | |
| self.num_branches = num_branches | |
| self.multi_scale_output = multi_scale_output | |
| self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) | |
| self.fuse_layers = self._make_fuse_layers() | |
| self.relu = nn.ReLU(inplace=True) | |
| # def _check_branches(self, num_branches, blocks, num_blocks, | |
| # num_inchannels, num_channels): | |
| # if num_branches != len(num_blocks): | |
| # error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( | |
| # num_branches, len(num_blocks)) | |
| # logger.error(error_msg) | |
| # raise ValueError(error_msg) | |
| # if num_branches != len(num_channels): | |
| # error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( | |
| # num_branches, len(num_channels)) | |
| # logger.error(error_msg) | |
| # raise ValueError(error_msg) | |
| # if num_branches != len(num_inchannels): | |
| # error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( | |
| # num_branches, len(num_inchannels)) | |
| # logger.error(error_msg) | |
| # raise ValueError(error_msg) | |
| def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): | |
| downsample = None | |
| if stride != 1 or self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| self.num_inchannels[branch_index], | |
| num_channels[branch_index] * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False, | |
| ), | |
| BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM), | |
| ) | |
| layers = [] | |
| layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample)) | |
| self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion | |
| for i in range(1, num_blocks[branch_index]): | |
| layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index])) | |
| return nn.Sequential(*layers) | |
| def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
| branches = [] | |
| for i in range(num_branches): | |
| branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) | |
| return nn.ModuleList(branches) | |
| def _make_fuse_layers(self): | |
| if self.num_branches == 1: | |
| return None | |
| num_branches = self.num_branches | |
| num_inchannels = self.num_inchannels | |
| fuse_layers = [] | |
| for i in range(num_branches if self.multi_scale_output else 1): | |
| fuse_layer = [] | |
| for j in range(num_branches): | |
| if j > i: | |
| fuse_layer.append( | |
| nn.Sequential( | |
| nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False), | |
| BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM), | |
| ) | |
| ) | |
| # nn.Upsample(scale_factor=2**(j-i), mode='nearest'))) | |
| elif j == i: | |
| fuse_layer.append(None) | |
| else: | |
| conv3x3s = [] | |
| for k in range(i - j): | |
| if k == i - j - 1: | |
| num_outchannels_conv3x3 = num_inchannels[i] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), | |
| BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM), | |
| ) | |
| ) | |
| else: | |
| num_outchannels_conv3x3 = num_inchannels[j] | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), | |
| BatchNorm2d(num_outchannels_conv3x3, momentum=BN_MOMENTUM), | |
| nn.ReLU(inplace=True), | |
| ) | |
| ) | |
| fuse_layer.append(nn.Sequential(*conv3x3s)) | |
| fuse_layers.append(nn.ModuleList(fuse_layer)) | |
| return nn.ModuleList(fuse_layers) | |
| def get_num_inchannels(self): | |
| return self.num_inchannels | |
| def forward(self, x): | |
| if self.num_branches == 1: | |
| return [self.branches[0](x[0])] | |
| for i in range(self.num_branches): | |
| x[i] = self.branches[i](x[i]) | |
| x_fuse = [] | |
| for i in range(len(self.fuse_layers)): | |
| y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
| for j in range(1, self.num_branches): | |
| if i == j: | |
| y = y + x[j] | |
| elif j > i: | |
| y = y + F.interpolate( | |
| self.fuse_layers[i][j](x[j]), size=[x[i].shape[2], x[i].shape[3]], mode="bilinear" | |
| ) | |
| else: | |
| y = y + self.fuse_layers[i][j](x[j]) | |
| x_fuse.append(self.relu(y)) | |
| return x_fuse | |
| blocks_dict = {"BASIC": BasicBlock, "BOTTLENECK": Bottleneck} | |
| class HighResolutionNet(nn.Module): | |
| def __init__( | |
| self, | |
| ): | |
| self.inplanes = 64 | |
| super(HighResolutionNet, self).__init__() | |
| # stem net | |
| self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
| self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
| self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.sf = nn.Softmax(dim=1) | |
| self.layer1 = self._make_layer(Bottleneck, 64, 64, 4) | |
| num_channels = [18, 36] | |
| block = blocks_dict["BASIC"] | |
| num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
| self.transition1 = self._make_transition_layer([256], num_channels) | |
| config_list = [1, 2, [4, 4], [18, 36], "BASIC", "SUM"] | |
| self.stage2, pre_stage_channels = self._make_stage(config_list, num_channels) | |
| num_channels = [18, 36, 72] | |
| block = blocks_dict["BASIC"] | |
| num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
| self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) | |
| config_list = [4, 3, [4, 4, 4], [18, 36, 72], "BASIC", "SUM"] | |
| self.stage3, pre_stage_channels = self._make_stage(config_list, num_channels) | |
| num_channels = [18, 36, 72, 144] | |
| block = blocks_dict["BASIC"] | |
| num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
| self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) | |
| config_list = [3, 4, [4, 4, 4, 4], [18, 36, 72, 144], "BASIC", "SUM"] | |
| self.stage4, pre_stage_channels = self._make_stage(config_list, num_channels, multi_scale_output=True) | |
| final_inp_channels = sum(pre_stage_channels) | |
| self.head = nn.Sequential( | |
| nn.Conv2d( | |
| in_channels=final_inp_channels, out_channels=final_inp_channels, kernel_size=1, stride=1, padding=0 | |
| ), | |
| BatchNorm2d(final_inp_channels, momentum=BN_MOMENTUM), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(in_channels=final_inp_channels, out_channels=98, kernel_size=1, stride=1, padding=0), | |
| ) | |
| def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): | |
| num_branches_cur = len(num_channels_cur_layer) | |
| num_branches_pre = len(num_channels_pre_layer) | |
| transition_layers = [] | |
| for i in range(num_branches_cur): | |
| if i < num_branches_pre: | |
| if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
| transition_layers.append( | |
| nn.Sequential( | |
| nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), | |
| BatchNorm2d(num_channels_cur_layer[i], momentum=BN_MOMENTUM), | |
| nn.ReLU(inplace=True), | |
| ) | |
| ) | |
| else: | |
| transition_layers.append(None) | |
| else: | |
| conv3x3s = [] | |
| for j in range(i + 1 - num_branches_pre): | |
| inchannels = num_channels_pre_layer[-1] | |
| outchannels = num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels | |
| conv3x3s.append( | |
| nn.Sequential( | |
| nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False), | |
| BatchNorm2d(outchannels, momentum=BN_MOMENTUM), | |
| nn.ReLU(inplace=True), | |
| ) | |
| ) | |
| transition_layers.append(nn.Sequential(*conv3x3s)) | |
| return nn.ModuleList(transition_layers) | |
| def _make_layer(self, block, inplanes, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), | |
| BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
| ) | |
| layers = [] | |
| layers.append(block(inplanes, planes, stride, downsample)) | |
| inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append(block(inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| def _make_stage(self, config_list, num_inchannels, multi_scale_output=True): | |
| num_modules = config_list[0] | |
| num_branches = config_list[1] | |
| num_blocks = config_list[2] | |
| num_channels = config_list[3] | |
| block = blocks_dict[config_list[4]] | |
| fuse_method = config_list[5] | |
| modules = [] | |
| for i in range(num_modules): | |
| # multi_scale_output is only used last module | |
| if not multi_scale_output and i == num_modules - 1: | |
| reset_multi_scale_output = False | |
| else: | |
| reset_multi_scale_output = True | |
| modules.append( | |
| HighResolutionModule( | |
| num_branches, block, num_blocks, num_inchannels, num_channels, fuse_method, reset_multi_scale_output | |
| ) | |
| ) | |
| num_inchannels = modules[-1].get_num_inchannels() | |
| return nn.Sequential(*modules), num_inchannels | |
| def forward(self, x): | |
| # h, w = x.size(2), x.size(3) | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.conv2(x) | |
| x = self.bn2(x) | |
| x = self.relu(x) | |
| x = self.layer1(x) | |
| x_list = [] | |
| for i in range(2): | |
| if self.transition1[i] is not None: | |
| x_list.append(self.transition1[i](x)) | |
| else: | |
| x_list.append(x) | |
| y_list = self.stage2(x_list) | |
| x_list = [] | |
| for i in range(3): | |
| if self.transition2[i] is not None: | |
| x_list.append(self.transition2[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| y_list = self.stage3(x_list) | |
| x_list = [] | |
| for i in range(4): | |
| if self.transition3[i] is not None: | |
| x_list.append(self.transition3[i](y_list[-1])) | |
| else: | |
| x_list.append(y_list[i]) | |
| x = self.stage4(x_list) | |
| # Head Part | |
| height, width = x[0].size(2), x[0].size(3) | |
| x1 = F.interpolate(x[1], size=(height, width), mode="bilinear", align_corners=False) | |
| x2 = F.interpolate(x[2], size=(height, width), mode="bilinear", align_corners=False) | |
| x3 = F.interpolate(x[3], size=(height, width), mode="bilinear", align_corners=False) | |
| x = torch.cat([x[0], x1, x2, x3], 1) | |
| x = self.head(x) | |
| return x | |