xuehongyang
ser
83d8d3c
import argparse
import os
import uuid
import cv2
import gradio as gr
import kornia
import numpy as np
import torch
from loguru import logger
from torchaudio.io import StreamReader
from torchaudio.io import StreamWriter
from benchmark.face_pipeline import alignFace
from benchmark.face_pipeline import FaceDetector
from benchmark.face_pipeline import inverse_transform_batch
from benchmark.face_pipeline import SoftErosion
from configs.train_config import TrainConfig
from models.model import HifiFace
class VideoSwap:
def __init__(self, cfg, model=None):
self.facedetector = FaceDetector(cfg.face_detector_weights)
self.alignface = alignFace()
self.work_dir = "."
opt = TrainConfig()
opt.use_ddp = False
self.device = "cuda"
self.ffmpeg_device = cfg.ffmpeg_device
self.num_frames = 10
self.kps_window = []
checkpoint = (cfg.model_path, cfg.model_idx)
if model is None:
self.model = HifiFace(
opt.identity_extractor_config, is_training=False, device=self.device, load_checkpoint=checkpoint
)
else:
self.model = model
self.model.eval()
os.makedirs(self.work_dir, exist_ok=True)
uid = uuid.uuid4()
self.swapped_video = os.path.join(self.work_dir, f"tmp_{uid}.mp4")
# model-idx_image-name_target-video-name.mp4
swapped_with_audio_name = f"result_{uid}.mp4"
# 带有音频的换脸视频
self.swapped_video_with_audio = os.path.join(self.work_dir, swapped_with_audio_name)
self.smooth_mask = SoftErosion(kernel_size=7, threshold=0.9, iterations=7).to(self.device)
def yuv_to_rgb(self, img):
img = img.to(torch.float)
y = img[..., 0, :, :]
u = img[..., 1, :, :]
v = img[..., 2, :, :]
y /= 255
u = u / 255 - 0.5
v = v / 255 - 0.5
r = y + 1.14 * v
g = y + -0.396 * u - 0.581 * v
b = y + 2.029 * u
rgb = torch.stack([r, g, b], -1)
return rgb
def rgb_to_yuv(self, img):
r = img[..., 0, :, :]
g = img[..., 1, :, :]
b = img[..., 2, :, :]
y = (0.299 * r + 0.587 * g + 0.114 * b) * 255
u = (-0.1471 * r - 0.2889 * g + 0.4360 * b) * 255 + 128
v = (0.6149 * r - 0.5149 * g - 0.1 * b) * 255 + 128
yuv = torch.stack([y, u, v], -1)
return torch.clamp(yuv, 0.0, 255.0, out=None).type(dtype=torch.uint8).transpose(3, 2).transpose(2, 1)
def _geometry_transfrom_warp_affine(self, swapped_image, inv_att_transforms, frame_size, square_mask):
swapped_image = kornia.geometry.transform.warp_affine(
swapped_image,
inv_att_transforms,
frame_size,
mode="bilinear",
padding_mode="border",
align_corners=True,
fill_value=torch.zeros(3),
)
square_mask = kornia.geometry.transform.warp_affine(
square_mask,
inv_att_transforms,
frame_size,
mode="bilinear",
padding_mode="zeros",
align_corners=True,
fill_value=torch.zeros(3),
)
return swapped_image, square_mask
def smooth_kps(self, kps):
self.kps_window.append(kps.flatten())
self.kps_window = self.kps_window[1:]
X = np.stack(self.kps_window, axis=1)
y = self.kps_window[-1]
y_cor = X @ np.linalg.inv(X.transpose() @ X - 0.0007 * np.eye(self.num_frames)) @ X.transpose() @ y
self.kps_window[-1] = y_cor
return y_cor.reshape((5, 2))
def detect_and_align(self, image, src_is=False):
detection = self.facedetector(image)
if detection.score is None:
self.kps_window = []
return None, None
max_score_ind = np.argmax(detection.score, axis=0)
kps = detection.key_points[max_score_ind]
if len(self.kps_window) < self.num_frames:
self.kps_window.append(kps.flatten())
else:
kps = self.smooth_kps(kps)
align_img, warp_mat = self.alignface.align_face(image, kps, 256)
align_img = cv2.resize(align_img, (256, 256))
align_img = align_img.transpose(2, 0, 1)
align_img = torch.from_numpy(align_img).unsqueeze(0).to(self.device).float()
align_img = align_img / 255.0
if src_is:
self.kps_window = []
return align_img, warp_mat
def inference(self, source_face, target_video, shape_rate, id_rate, iterations=1):
video = cv2.VideoCapture(target_video)
# 获取视频宽度
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
# 获取视频高度
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 获取帧率
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
video.release()
self.frame_size = (frame_height, frame_width)
if self.ffmpeg_device == "cuda":
self.decode_config = {"frames_per_chunk": 1, "decoder": "h264", "format": "yuv444p"}
# self.decode_config = {
# "frames_per_chunk": 1,
# "decoder": "h264_cuvid",
# "decoder_option": {"gpu": "0"},
# "hw_accel": "cuda:0",
# }
self.encode_config = {
"encoder": "h264_nvenc", # GPU Encoder
"encoder_format": "yuv444p",
"encoder_option": {"gpu": "0", "cq": "10"}, # Run encoding on the cuda:0 device
"hw_accel": "cuda:0", # Data comes from cuda:0 device
"frame_rate": frame_rate,
"height": frame_height,
"width": frame_width,
"format": "yuv444p",
}
else:
self.decode_config = {"frames_per_chunk": 1, "decoder": "h264", "format": "yuv444p"}
self.encode_config = {
"encoder": "libx264",
"encoder_format": "yuv444p",
"frame_rate": frame_rate,
"height": frame_height,
"width": frame_width,
"format": "yuv444p",
}
src = source_face
src, _ = self.detect_and_align(src, src_is=True)
logger.info("start swapping")
sr = StreamReader(target_video)
if self.ffmpeg_device == "cpu":
sr.add_basic_video_stream(**self.decode_config)
else:
sr.add_basic_video_stream(**self.decode_config)
# sr.add_video_stream(**self.decode_config)
sw = StreamWriter(self.swapped_video)
sw.add_video_stream(**self.encode_config)
with sw.open():
for (chunk,) in sr.stream():
# StreamReader cuda decode颜色格式默认为yuv需要转为rgb
chunk = self.yuv_to_rgb(chunk)
image = (chunk * 255).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
align_img, warp_mat = self.detect_and_align(image)
chunk = chunk.transpose(3, 2).transpose(2, 1).to(self.device)
if align_img is None:
result_face = chunk
else:
with torch.no_grad():
for _ in range(iterations):
swapped_face, m_r = self.model.forward(src, align_img, shape_rate, id_rate)
swapped_face = torch.clamp(swapped_face, 0, 1)
align_img = swapped_face
smooth_face_mask, _ = self.smooth_mask(m_r)
warp_mat = torch.from_numpy(warp_mat).float().unsqueeze(0)
inverse_warp_mat = inverse_transform_batch(warp_mat)
swapped_face, smooth_face_mask = self._geometry_transfrom_warp_affine(
swapped_face, inverse_warp_mat, self.frame_size, smooth_face_mask
)
result_face = (1 - smooth_face_mask) * chunk + smooth_face_mask * swapped_face
result_face = self.rgb_to_yuv(result_face).to(self.ffmpeg_device)
sw.write_video_chunk(0, result_face)
# 将target_video中的音频转移到换脸视频上
command = f"ffmpeg -loglevel error -i {self.swapped_video} -i {target_video} -c copy \
-map 0 -map 1:1? -y -shortest {self.swapped_video_with_audio}"
os.system(command)
# 删除没有音频的换脸视频
os.system(f"rm {self.swapped_video}")
return self.swapped_video_with_audio
class ConfigPath:
face_detector_weights = "/mnt/c/yangguo/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx"
model_path = ""
model_idx = 80000
ffmpeg_device = "cuda"
def main():
cfg = ConfigPath()
parser = argparse.ArgumentParser(
prog="benchmark", description="What the program does", epilog="Text at the bottom of help"
)
parser.add_argument("-m", "--model_path")
parser.add_argument("-i", "--model_idx")
parser.add_argument("-f", "--ffmpeg_device")
args = parser.parse_args()
cfg.model_path = args.model_path
cfg.model_idx = int(args.model_idx)
cfg.ffmpeg_device = args.ffmpeg_device
infer = VideoSwap(cfg)
def inference(source_face, target_video, shape_rate, id_rate):
return infer.inference(source_face, target_video, shape_rate, id_rate)
output = gr.Video(value=None, label="换脸结果")
demo = gr.Interface(
fn=inference,
inputs=[
gr.Image(shape=None, label="选脸图"),
gr.Video(value=None, label="目标视频"),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="3d结构相似度(1.0表示完全替换)",
),
gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="人脸特征相似度(1.0表示完全替换)",
),
],
outputs=output,
title="HiConFace视频人脸融合系统",
description="v1.0: developed by yiwise CV group",
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
main()