Spaces:
Running
Running
Upload 4 files
Browse files- utils/api_clients.py +194 -0
- utils/faq.py +112 -0
- utils/feedback.py +105 -0
- utils/nlp_helpers.py +212 -0
utils/api_clients.py
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
utils/api_clients.py
|
| 3 |
+
------------------------------------------------
|
| 4 |
+
Enhanced API clients for:
|
| 5 |
+
- PubMed (NCBI)
|
| 6 |
+
- ClinicalTrials.gov
|
| 7 |
+
- FDA Open Data
|
| 8 |
+
- WHO ICTRP
|
| 9 |
+
------------------------------------------------
|
| 10 |
+
Optimized for hybrid VAN-based query processing:
|
| 11 |
+
- Automatically truncates long queries (top keywords only)
|
| 12 |
+
- Resilient to API downtime or malformed responses
|
| 13 |
+
- HTML formatted results for Gradio rendering
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
import requests
|
| 17 |
+
import html
|
| 18 |
+
import re
|
| 19 |
+
import traceback
|
| 20 |
+
|
| 21 |
+
# ============================================================
|
| 22 |
+
# 🔹 Query Normalization
|
| 23 |
+
# ============================================================
|
| 24 |
+
def _normalize_query(query: str, max_words: int = 5) -> str:
|
| 25 |
+
"""
|
| 26 |
+
Cleans and shortens user query for API compatibility.
|
| 27 |
+
Removes filler phrases and limits to key words.
|
| 28 |
+
"""
|
| 29 |
+
q = query.lower()
|
| 30 |
+
q = re.sub(
|
| 31 |
+
r"(what is|define|explain|describe|in clinical trials|the meaning of|tell me about|explanation of|concept of)\b",
|
| 32 |
+
"",
|
| 33 |
+
q,
|
| 34 |
+
)
|
| 35 |
+
q = re.sub(r"[^a-z0-9\s]", "", q)
|
| 36 |
+
q = re.sub(r"\s+", " ", q).strip()
|
| 37 |
+
|
| 38 |
+
# limit to first few words (avoid 404s from overlong queries)
|
| 39 |
+
words = q.split()
|
| 40 |
+
q = " ".join(words[:max_words])
|
| 41 |
+
return q or "clinical trial"
|
| 42 |
+
|
| 43 |
+
# ============================================================
|
| 44 |
+
# 🔹 PubMed API (NCBI E-Utilities)
|
| 45 |
+
# ============================================================
|
| 46 |
+
def fetch_pubmed(query: str, limit: int = 3) -> str:
|
| 47 |
+
try:
|
| 48 |
+
q = _normalize_query(query)
|
| 49 |
+
base = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/"
|
| 50 |
+
esearch = f"{base}esearch.fcgi?db=pubmed&term={q}&retmax={limit}&retmode=json"
|
| 51 |
+
res = requests.get(esearch, timeout=10)
|
| 52 |
+
res.raise_for_status()
|
| 53 |
+
|
| 54 |
+
ids = res.json().get("esearchresult", {}).get("idlist", [])
|
| 55 |
+
if not ids:
|
| 56 |
+
return f"<i>No PubMed results found for <b>{html.escape(q)}</b>.</i>"
|
| 57 |
+
|
| 58 |
+
summaries = []
|
| 59 |
+
for pmid in ids:
|
| 60 |
+
summary_url = f"{base}esummary.fcgi?db=pubmed&id={pmid}&retmode=json"
|
| 61 |
+
sres = requests.get(summary_url, timeout=10)
|
| 62 |
+
sres.raise_for_status()
|
| 63 |
+
doc = sres.json()["result"].get(pmid, {})
|
| 64 |
+
title = html.escape(doc.get("title", "Untitled"))
|
| 65 |
+
source = html.escape(doc.get("source", ""))
|
| 66 |
+
pubdate = html.escape(doc.get("pubdate", ""))
|
| 67 |
+
link = f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/"
|
| 68 |
+
summaries.append(
|
| 69 |
+
f"<b>{title}</b><br>{source} ({pubdate})<br>"
|
| 70 |
+
f"<a href='{link}' target='_blank'>[PubMed]</a>"
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
return "<br><br>".join(summaries)
|
| 74 |
+
|
| 75 |
+
except Exception as e:
|
| 76 |
+
traceback.print_exc()
|
| 77 |
+
return f"<i>PubMed fetch failed for <b>{html.escape(query)}</b>: {e}</i>"
|
| 78 |
+
|
| 79 |
+
# ============================================================
|
| 80 |
+
# 🔹 ClinicalTrials.gov API
|
| 81 |
+
# ============================================================
|
| 82 |
+
def fetch_clinicaltrials(query: str, limit: int = 3) -> str:
|
| 83 |
+
"""
|
| 84 |
+
Retrieves brief summaries of matching trials from ClinicalTrials.gov.
|
| 85 |
+
Automatically truncates query to avoid 404s on long input.
|
| 86 |
+
"""
|
| 87 |
+
try:
|
| 88 |
+
q = _normalize_query(query)
|
| 89 |
+
url = (
|
| 90 |
+
f"https://clinicaltrials.gov/api/query/study_fields?"
|
| 91 |
+
f"expr={q}&fields=NCTId,BriefTitle,Condition,OverallStatus"
|
| 92 |
+
f"&max_rnk={limit}&fmt=json"
|
| 93 |
+
)
|
| 94 |
+
res = requests.get(url, timeout=10)
|
| 95 |
+
res.raise_for_status()
|
| 96 |
+
|
| 97 |
+
studies = res.json().get("StudyFieldsResponse", {}).get("StudyFields", [])
|
| 98 |
+
if not studies:
|
| 99 |
+
return f"<i>No trials found for <b>{html.escape(q)}</b>.</i>"
|
| 100 |
+
|
| 101 |
+
formatted = []
|
| 102 |
+
for s in studies:
|
| 103 |
+
nct = s.get("NCTId", [""])[0]
|
| 104 |
+
title = html.escape(s.get("BriefTitle", [""])[0])
|
| 105 |
+
condition = html.escape(", ".join(s.get("Condition", [])))
|
| 106 |
+
status = html.escape(s.get("OverallStatus", ["Unknown"])[0])
|
| 107 |
+
link = f"https://clinicaltrials.gov/study/{nct}" if nct else "#"
|
| 108 |
+
formatted.append(
|
| 109 |
+
f"<b>{title}</b><br>"
|
| 110 |
+
f"Condition: {condition or 'N/A'}<br>"
|
| 111 |
+
f"Status: {status}<br>"
|
| 112 |
+
f"<a href='{link}' target='_blank'>[ClinicalTrials.gov]</a>"
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
return "<br><br>".join(formatted)
|
| 116 |
+
|
| 117 |
+
except Exception as e:
|
| 118 |
+
traceback.print_exc()
|
| 119 |
+
return f"<i>ClinicalTrials.gov fetch failed for <b>{html.escape(query)}</b>: {e}</i>"
|
| 120 |
+
|
| 121 |
+
# ============================================================
|
| 122 |
+
# 🔹 FDA Open Data API
|
| 123 |
+
# ============================================================
|
| 124 |
+
def fetch_fda(query: str, limit: int = 3) -> str:
|
| 125 |
+
"""
|
| 126 |
+
Retrieves FDA label and safety data for a given compound/drug name.
|
| 127 |
+
"""
|
| 128 |
+
try:
|
| 129 |
+
q = _normalize_query(query)
|
| 130 |
+
url = f"https://api.fda.gov/drug/label.json?search=openfda.brand_name:{q}&limit={limit}"
|
| 131 |
+
res = requests.get(url, timeout=10)
|
| 132 |
+
|
| 133 |
+
if res.status_code == 404:
|
| 134 |
+
return f"<i>No FDA data found for <b>{html.escape(q)}</b>.</i>"
|
| 135 |
+
|
| 136 |
+
res.raise_for_status()
|
| 137 |
+
data = res.json().get("results", [])
|
| 138 |
+
if not data:
|
| 139 |
+
return f"<i>No FDA label results found for <b>{html.escape(q)}</b>.</i>"
|
| 140 |
+
|
| 141 |
+
formatted = []
|
| 142 |
+
for entry in data:
|
| 143 |
+
brand = ", ".join(entry.get("openfda", {}).get("brand_name", []))
|
| 144 |
+
generic = ", ".join(entry.get("openfda", {}).get("generic_name", []))
|
| 145 |
+
purpose = html.escape(" ".join(entry.get("purpose", [])[:1]))
|
| 146 |
+
warnings = html.escape(" ".join(entry.get("warnings", [])[:1]))
|
| 147 |
+
link = "https://open.fda.gov/drug/label/"
|
| 148 |
+
formatted.append(
|
| 149 |
+
f"<b>{brand or q}</b> ({generic or 'N/A'})<br>"
|
| 150 |
+
f"<u>Purpose:</u> {purpose or 'N/A'}<br>"
|
| 151 |
+
f"<u>Warning:</u> {warnings or 'N/A'}<br>"
|
| 152 |
+
f"<a href='{link}' target='_blank'>[FDA Label]</a>"
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
return "<br><br>".join(formatted)
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
traceback.print_exc()
|
| 159 |
+
return f"<i>FDA fetch failed for <b>{html.escape(query)}</b>: {e}</i>"
|
| 160 |
+
|
| 161 |
+
# ============================================================
|
| 162 |
+
# 🔹 WHO ICTRP (Backup Trial Source)
|
| 163 |
+
# ============================================================
|
| 164 |
+
def fetch_who_trials(query: str, limit: int = 2) -> str:
|
| 165 |
+
"""
|
| 166 |
+
Optional backup trial search from WHO ICTRP API.
|
| 167 |
+
Returns simplified summaries for readability.
|
| 168 |
+
"""
|
| 169 |
+
try:
|
| 170 |
+
q = _normalize_query(query)
|
| 171 |
+
url = f"https://trialsearch.who.int/api/TrialSearch?query={q}"
|
| 172 |
+
res = requests.get(url, timeout=10)
|
| 173 |
+
|
| 174 |
+
if res.status_code != 200:
|
| 175 |
+
return "<i>WHO ICTRP API unavailable or throttled.</i>"
|
| 176 |
+
|
| 177 |
+
trials = res.json().get("TrialSearchResult", [])
|
| 178 |
+
if not trials:
|
| 179 |
+
return f"<i>No WHO trials found for <b>{html.escape(q)}</b>.</i>"
|
| 180 |
+
|
| 181 |
+
formatted = []
|
| 182 |
+
for t in trials[:limit]:
|
| 183 |
+
title = html.escape(t.get("Scientific_title", "Untitled"))
|
| 184 |
+
registry = html.escape(t.get("Register", ""))
|
| 185 |
+
country = html.escape(t.get("Recruitment_Country", ""))
|
| 186 |
+
formatted.append(
|
| 187 |
+
f"<b>{title}</b><br>{registry or 'Registry Unknown'} — {country or 'N/A'}"
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
return "<br><br>".join(formatted)
|
| 191 |
+
|
| 192 |
+
except Exception as e:
|
| 193 |
+
traceback.print_exc()
|
| 194 |
+
return f"<i>WHO ICTRP fetch failed for <b>{html.escape(query)}</b>: {e}</i>"
|
utils/faq.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from sentence_transformers import SentenceTransformer, util
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
FAQ_PATHS = ["data/faq_data.json", "data/clinical_faq.json"]
|
| 7 |
+
_FAQ_CACHE = None
|
| 8 |
+
_FAQ_EMBEDDINGS = None
|
| 9 |
+
_MODEL = None
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _get_model():
|
| 13 |
+
"""Load and cache the embedding model (shared with main app if possible)."""
|
| 14 |
+
global _MODEL
|
| 15 |
+
if _MODEL is None:
|
| 16 |
+
print("📦 [faq] Loading embedding model: all-MiniLM-L6-v2 ...")
|
| 17 |
+
_MODEL = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 18 |
+
return _MODEL
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def load_faqs():
|
| 22 |
+
"""Load FAQ data from JSON files and cache them."""
|
| 23 |
+
global _FAQ_CACHE
|
| 24 |
+
if _FAQ_CACHE is not None:
|
| 25 |
+
return _FAQ_CACHE
|
| 26 |
+
|
| 27 |
+
all_faqs = []
|
| 28 |
+
for path in FAQ_PATHS:
|
| 29 |
+
if os.path.exists(path):
|
| 30 |
+
try:
|
| 31 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 32 |
+
data = json.load(f)
|
| 33 |
+
if isinstance(data, list):
|
| 34 |
+
all_faqs.extend(data)
|
| 35 |
+
elif isinstance(data, dict):
|
| 36 |
+
for k, v in data.items():
|
| 37 |
+
all_faqs.append({"question": k, "answer": v})
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print(f"⚠️ Failed to load FAQ file {path}: {e}")
|
| 40 |
+
|
| 41 |
+
_FAQ_CACHE = all_faqs
|
| 42 |
+
print(f"✅ [faq] Loaded {len(_FAQ_CACHE)} FAQ entries.")
|
| 43 |
+
return _FAQ_CACHE
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def _build_embeddings():
|
| 47 |
+
"""Precompute embeddings for all FAQ questions."""
|
| 48 |
+
global _FAQ_EMBEDDINGS
|
| 49 |
+
faqs = load_faqs()
|
| 50 |
+
if not faqs:
|
| 51 |
+
_FAQ_EMBEDDINGS = torch.empty(0)
|
| 52 |
+
return _FAQ_EMBEDDINGS
|
| 53 |
+
|
| 54 |
+
model = _get_model()
|
| 55 |
+
questions = [f["question"] for f in faqs if f.get("question")]
|
| 56 |
+
_FAQ_EMBEDDINGS = model.encode(questions, convert_to_tensor=True, show_progress_bar=False)
|
| 57 |
+
print(f"✅ [faq] Encoded {len(_FAQ_EMBEDDINGS)} FAQ embeddings.")
|
| 58 |
+
return _FAQ_EMBEDDINGS
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_faq_answer(query: str, top_k: int = 1) -> str:
|
| 62 |
+
"""
|
| 63 |
+
Return the most semantically similar FAQ answer to the query.
|
| 64 |
+
Uses MiniLM embeddings and cosine similarity.
|
| 65 |
+
"""
|
| 66 |
+
faqs = load_faqs()
|
| 67 |
+
if not faqs:
|
| 68 |
+
return ""
|
| 69 |
+
|
| 70 |
+
if _FAQ_EMBEDDINGS is None:
|
| 71 |
+
_build_embeddings()
|
| 72 |
+
|
| 73 |
+
model = _get_model()
|
| 74 |
+
query_emb = model.encode(query, convert_to_tensor=True)
|
| 75 |
+
sims = util.cos_sim(query_emb, _FAQ_EMBEDDINGS)[0]
|
| 76 |
+
top_idx = int(torch.argmax(sims))
|
| 77 |
+
|
| 78 |
+
best_score = float(sims[top_idx])
|
| 79 |
+
best_item = faqs[top_idx]
|
| 80 |
+
|
| 81 |
+
if best_score < 0.45: # threshold to avoid weak matches
|
| 82 |
+
return ""
|
| 83 |
+
|
| 84 |
+
answer = best_item.get("answer", "")
|
| 85 |
+
print(f"💡 [faq] Best match: \"{best_item.get('question')}\" (score={best_score:.2f})")
|
| 86 |
+
return answer
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def lookup_faq(query: str, top_k: int = 3) -> str:
|
| 90 |
+
"""
|
| 91 |
+
Return HTML-formatted list of top-k semantically similar FAQ matches.
|
| 92 |
+
Useful for admin or verbose display.
|
| 93 |
+
"""
|
| 94 |
+
faqs = load_faqs()
|
| 95 |
+
if not faqs:
|
| 96 |
+
return "<i>No FAQ data loaded.</i>"
|
| 97 |
+
|
| 98 |
+
if _FAQ_EMBEDDINGS is None:
|
| 99 |
+
_build_embeddings()
|
| 100 |
+
|
| 101 |
+
model = _get_model()
|
| 102 |
+
query_emb = model.encode(query, convert_to_tensor=True)
|
| 103 |
+
sims = util.cos_sim(query_emb, _FAQ_EMBEDDINGS)[0]
|
| 104 |
+
top_indices = torch.topk(sims, k=min(top_k, len(faqs))).indices.tolist()
|
| 105 |
+
|
| 106 |
+
html = []
|
| 107 |
+
for idx in top_indices:
|
| 108 |
+
score = float(sims[idx])
|
| 109 |
+
item = faqs[idx]
|
| 110 |
+
html.append(f"<b>{item['question']}</b><br>{item['answer']}<br><i>(score={score:.2f})</i>")
|
| 111 |
+
|
| 112 |
+
return "<br><br>".join(html)
|
utils/feedback.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
utils/feedback.py
|
| 3 |
+
Unified feedback handler for Clinical Research Chatbot.
|
| 4 |
+
|
| 5 |
+
Includes:
|
| 6 |
+
1️⃣ Feedback Queue (unanswered/low-confidence queries)
|
| 7 |
+
2️⃣ User Voting (👍 Helpful / 👎 Not Helpful)
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import json
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
|
| 14 |
+
# ----------------------------
|
| 15 |
+
# File Paths
|
| 16 |
+
# ----------------------------
|
| 17 |
+
FEEDBACK_QUEUE_LOG = "logs/feedback_queue.jsonl"
|
| 18 |
+
FEEDBACK_VOTES_LOG = "logs/feedback_votes.jsonl"
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# ----------------------------
|
| 22 |
+
# Feedback Queue (for Admin Review)
|
| 23 |
+
# ----------------------------
|
| 24 |
+
def log_feedback(query: str, notes: str = "", sources=None):
|
| 25 |
+
"""
|
| 26 |
+
Store unanswered or low-confidence queries for admin review.
|
| 27 |
+
Saves to JSONL (one entry per line).
|
| 28 |
+
"""
|
| 29 |
+
entry = {
|
| 30 |
+
"timestamp": datetime.utcnow().isoformat(),
|
| 31 |
+
"query": query,
|
| 32 |
+
"notes": notes,
|
| 33 |
+
"sources": sources or [],
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
os.makedirs(os.path.dirname(FEEDBACK_QUEUE_LOG), exist_ok=True)
|
| 37 |
+
with open(FEEDBACK_QUEUE_LOG, "a", encoding="utf-8") as f:
|
| 38 |
+
f.write(json.dumps(entry, ensure_ascii=False) + "\n")
|
| 39 |
+
|
| 40 |
+
print(f"📝 Feedback queued for admin review: {query}")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def load_feedback(limit: int = 20):
|
| 44 |
+
"""
|
| 45 |
+
Load last N feedback entries for admin dashboard.
|
| 46 |
+
"""
|
| 47 |
+
if not os.path.exists(FEEDBACK_QUEUE_LOG):
|
| 48 |
+
return []
|
| 49 |
+
with open(FEEDBACK_QUEUE_LOG, "r", encoding="utf-8") as f:
|
| 50 |
+
lines = f.readlines()
|
| 51 |
+
entries = [json.loads(line) for line in lines]
|
| 52 |
+
return entries[-limit:]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def clear_feedback():
|
| 56 |
+
"""
|
| 57 |
+
Clear feedback log (admin only).
|
| 58 |
+
"""
|
| 59 |
+
if os.path.exists(FEEDBACK_QUEUE_LOG):
|
| 60 |
+
os.remove(FEEDBACK_QUEUE_LOG)
|
| 61 |
+
print("🗑️ Feedback log cleared.")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# ----------------------------
|
| 65 |
+
# User Voting (for “Helpful / Not Helpful”)
|
| 66 |
+
# ----------------------------
|
| 67 |
+
def save_vote_feedback(query: str, vote: str, context=None):
|
| 68 |
+
"""
|
| 69 |
+
Log user votes (👍 / 👎) on chatbot responses.
|
| 70 |
+
"""
|
| 71 |
+
entry = {
|
| 72 |
+
"timestamp": datetime.utcnow().isoformat(),
|
| 73 |
+
"query": query,
|
| 74 |
+
"vote": vote,
|
| 75 |
+
"context": context or {},
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
os.makedirs(os.path.dirname(FEEDBACK_VOTES_LOG), exist_ok=True)
|
| 79 |
+
try:
|
| 80 |
+
with open(FEEDBACK_VOTES_LOG, "a", encoding="utf-8") as f:
|
| 81 |
+
f.write(json.dumps(entry, ensure_ascii=False) + "\n")
|
| 82 |
+
print(f"🗳️ User voted '{vote}' for query: {query}")
|
| 83 |
+
except Exception as e:
|
| 84 |
+
print(f"⚠️ Failed to save vote feedback: {e}")
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def load_votes(limit: int = 50):
|
| 88 |
+
"""
|
| 89 |
+
Load last N user votes for analysis.
|
| 90 |
+
"""
|
| 91 |
+
if not os.path.exists(FEEDBACK_VOTES_LOG):
|
| 92 |
+
return []
|
| 93 |
+
with open(FEEDBACK_VOTES_LOG, "r", encoding="utf-8") as f:
|
| 94 |
+
lines = f.readlines()
|
| 95 |
+
entries = [json.loads(line) for line in lines]
|
| 96 |
+
return entries[-limit:]
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def clear_votes():
|
| 100 |
+
"""
|
| 101 |
+
Clear user voting log (admin only).
|
| 102 |
+
"""
|
| 103 |
+
if os.path.exists(FEEDBACK_VOTES_LOG):
|
| 104 |
+
os.remove(FEEDBACK_VOTES_LOG)
|
| 105 |
+
print("🗑️ User vote feedback cleared.")
|
utils/nlp_helpers.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
utils/nlp_helpers.py — Enhanced NLP Utilities for Clinical Research Chatbot
|
| 3 |
+
----------------------------------------------------------------------------
|
| 4 |
+
✅ Domain-aware abbreviation normalization (ICH-GCP, CDISC, FDA)
|
| 5 |
+
✅ Glossary-synonym expansion with prioritization
|
| 6 |
+
✅ Improved VAN (Verb–Adjective–Noun) normalization
|
| 7 |
+
✅ Compatible with Hugging Face Spaces (persistent NLTK path)
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import re
|
| 12 |
+
import json
|
| 13 |
+
import nltk
|
| 14 |
+
from nltk.corpus import stopwords
|
| 15 |
+
from nltk.stem import WordNetLemmatizer
|
| 16 |
+
|
| 17 |
+
# --------------------------------------------------------------------
|
| 18 |
+
# 🧠 NLTK Setup (force consistent path for Hugging Face Spaces)
|
| 19 |
+
# --------------------------------------------------------------------
|
| 20 |
+
NLTK_PATH = "/usr/local/share/nltk_data"
|
| 21 |
+
os.environ["NLTK_DATA"] = NLTK_PATH
|
| 22 |
+
nltk.data.path.clear()
|
| 23 |
+
nltk.data.path.append(NLTK_PATH)
|
| 24 |
+
|
| 25 |
+
required_pkgs = [
|
| 26 |
+
"punkt",
|
| 27 |
+
"punkt_tab",
|
| 28 |
+
"averaged_perceptron_tagger",
|
| 29 |
+
"averaged_perceptron_tagger_eng",
|
| 30 |
+
"stopwords",
|
| 31 |
+
"wordnet",
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
for pkg in required_pkgs:
|
| 35 |
+
try:
|
| 36 |
+
nltk.data.find(pkg)
|
| 37 |
+
except LookupError:
|
| 38 |
+
nltk.download(pkg, download_dir=NLTK_PATH, quiet=True)
|
| 39 |
+
|
| 40 |
+
STOPWORDS = set(stopwords.words("english"))
|
| 41 |
+
lemmatizer = WordNetLemmatizer()
|
| 42 |
+
|
| 43 |
+
# --------------------------------------------------------------------
|
| 44 |
+
# ⚕️ Clinical Abbreviation & Synonym Normalization
|
| 45 |
+
# --------------------------------------------------------------------
|
| 46 |
+
NORMALIZATION_MAP = {
|
| 47 |
+
# Core trial terms
|
| 48 |
+
r"\be[-_ ]?crf(s)?\b": "electronic case report form",
|
| 49 |
+
r"\bedc(s)?\b": "electronic data capture",
|
| 50 |
+
r"\bctms\b": "clinical trial management system",
|
| 51 |
+
r"\bcsr(s)?\b": "clinical study report",
|
| 52 |
+
r"\bcrf\b": "case report form",
|
| 53 |
+
# Data standards
|
| 54 |
+
r"\bsdtm(s)?\b": "study data tabulation model",
|
| 55 |
+
r"\badam(s)?\b": "analysis data model",
|
| 56 |
+
r"\bdefine[-_ ]?xml\b": "define xml metadata",
|
| 57 |
+
# Compliance / Ethics
|
| 58 |
+
r"\bgcp\b": "good clinical practice",
|
| 59 |
+
r"\biec\b": "independent ethics committee",
|
| 60 |
+
r"\birb\b": "institutional review board",
|
| 61 |
+
r"\bpi\b": "principal investigator",
|
| 62 |
+
r"\bsub[-_ ]?inv(es)?tigators?\b": "sub investigator",
|
| 63 |
+
r"\bsae(s)?\b": "serious adverse event",
|
| 64 |
+
r"\bae(s)?\b": "adverse event",
|
| 65 |
+
r"\bsusar(s)?\b": "suspected unexpected serious adverse reaction",
|
| 66 |
+
# Misc
|
| 67 |
+
r"\bsdv\b": "source data verification",
|
| 68 |
+
r"\bsop(s)?\b": "standard operating procedure",
|
| 69 |
+
r"\bqms\b": "quality management system",
|
| 70 |
+
r"\bicf\b": "informed consent form",
|
| 71 |
+
r"\bregulatory\b": "regulatory compliance",
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
DOMAIN_SYNONYMS = {
|
| 75 |
+
"edc": ["data entry system", "data management platform"],
|
| 76 |
+
"ecrf": ["electronic data entry form", "study data form"],
|
| 77 |
+
"gcp": ["good clinical practice", "ich e6", "regulatory compliance"],
|
| 78 |
+
"sdtm": ["data tabulation model", "cdisc standard"],
|
| 79 |
+
"adam": ["analysis dataset model", "statistical dataset"],
|
| 80 |
+
"ae": ["adverse event", "side effect"],
|
| 81 |
+
"sae": ["serious adverse event", "life threatening event"],
|
| 82 |
+
"susar": ["unexpected serious adverse reaction", "drug safety event"],
|
| 83 |
+
"ctms": ["trial management tool", "site tracking system"],
|
| 84 |
+
"pi": ["principal investigator", "study doctor"],
|
| 85 |
+
"csr": ["clinical study report", "final study document"],
|
| 86 |
+
"qms": ["quality management framework", "audit system"],
|
| 87 |
+
"sop": ["standard operating procedure", "company process document"],
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
GLOSSARY_PATH = "data/glossary.json"
|
| 91 |
+
|
| 92 |
+
# --------------------------------------------------------------------
|
| 93 |
+
# 🧹 Text Normalization
|
| 94 |
+
# --------------------------------------------------------------------
|
| 95 |
+
def normalize_query_text(text: str) -> str:
|
| 96 |
+
"""Lowercase, remove punctuation, and expand known abbreviations."""
|
| 97 |
+
text = text.strip().lower()
|
| 98 |
+
text = re.sub(r"[^\w\s\-]", " ", text)
|
| 99 |
+
text = re.sub(r"\s+", " ", text)
|
| 100 |
+
for pattern, repl in NORMALIZATION_MAP.items():
|
| 101 |
+
text = re.sub(pattern, repl, text)
|
| 102 |
+
return text.strip()
|
| 103 |
+
|
| 104 |
+
# --------------------------------------------------------------------
|
| 105 |
+
# ⚙️ VAN (Verb–Adjective–Noun) Extraction — IMPROVED
|
| 106 |
+
# --------------------------------------------------------------------
|
| 107 |
+
def extract_van_tokens(text: str):
|
| 108 |
+
"""
|
| 109 |
+
Extract and normalize core content words using VAN logic.
|
| 110 |
+
- Lowercases and expands abbreviations
|
| 111 |
+
- Removes stopwords and determiners ('a', 'an', 'the')
|
| 112 |
+
- Keeps only Verbs, Adjectives, and Nouns
|
| 113 |
+
- Lemmatizes words to singular or base form
|
| 114 |
+
- Deduplicates tokens
|
| 115 |
+
"""
|
| 116 |
+
text = normalize_query_text(text)
|
| 117 |
+
if not text:
|
| 118 |
+
return []
|
| 119 |
+
|
| 120 |
+
try:
|
| 121 |
+
tokens = nltk.word_tokenize(text)
|
| 122 |
+
pos_tags = nltk.pos_tag(tokens)
|
| 123 |
+
except LookupError:
|
| 124 |
+
for pkg in ["punkt", "punkt_tab", "averaged_perceptron_tagger"]:
|
| 125 |
+
nltk.download(pkg, download_dir=NLTK_PATH, quiet=True)
|
| 126 |
+
pos_tags = nltk.pos_tag(nltk.word_tokenize(text))
|
| 127 |
+
|
| 128 |
+
filtered = []
|
| 129 |
+
for w, t in pos_tags:
|
| 130 |
+
if not w.isalpha():
|
| 131 |
+
continue
|
| 132 |
+
# Remove determiners and common auxiliaries
|
| 133 |
+
if w in {"a", "an", "the", "is", "are", "was", "were", "be", "been", "being"}:
|
| 134 |
+
continue
|
| 135 |
+
if w in STOPWORDS:
|
| 136 |
+
continue
|
| 137 |
+
if len(w) <= 2:
|
| 138 |
+
continue
|
| 139 |
+
# Keep only N, V, J
|
| 140 |
+
if t.startswith(("N", "V", "J")):
|
| 141 |
+
pos = (
|
| 142 |
+
"v" if t.startswith("V")
|
| 143 |
+
else "a" if t.startswith("J")
|
| 144 |
+
else "n"
|
| 145 |
+
)
|
| 146 |
+
lemma = lemmatizer.lemmatize(w, pos)
|
| 147 |
+
filtered.append(lemma)
|
| 148 |
+
|
| 149 |
+
# Deduplicate while preserving order
|
| 150 |
+
seen, unique = set(), []
|
| 151 |
+
for w in filtered:
|
| 152 |
+
if w not in seen:
|
| 153 |
+
seen.add(w)
|
| 154 |
+
unique.append(w)
|
| 155 |
+
return unique
|
| 156 |
+
|
| 157 |
+
# --------------------------------------------------------------------
|
| 158 |
+
# 📘 Glossary-based Synonym Expansion
|
| 159 |
+
# --------------------------------------------------------------------
|
| 160 |
+
def expand_with_glossary(tokens: list):
|
| 161 |
+
"""Expand tokens using both internal DOMAIN_SYNONYMS and glossary.json."""
|
| 162 |
+
expanded = list(tokens)
|
| 163 |
+
|
| 164 |
+
# Add domain synonym expansion
|
| 165 |
+
for token in tokens:
|
| 166 |
+
key = token.lower()
|
| 167 |
+
if key in DOMAIN_SYNONYMS:
|
| 168 |
+
expanded.extend(DOMAIN_SYNONYMS[key])
|
| 169 |
+
|
| 170 |
+
# Glossary-driven enrichment
|
| 171 |
+
if os.path.exists(GLOSSARY_PATH):
|
| 172 |
+
try:
|
| 173 |
+
with open(GLOSSARY_PATH, "r", encoding="utf-8") as f:
|
| 174 |
+
glossary = json.load(f)
|
| 175 |
+
except Exception:
|
| 176 |
+
glossary = {}
|
| 177 |
+
for token in tokens:
|
| 178 |
+
t_norm = re.sub(r"[^a-z0-9]", "", token.lower())
|
| 179 |
+
for term, definition in glossary.items():
|
| 180 |
+
term_norm = re.sub(r"[^a-z0-9]", "", term.lower())
|
| 181 |
+
if t_norm in term_norm or term_norm in t_norm:
|
| 182 |
+
defs = [
|
| 183 |
+
w for w in re.findall(r"[a-z]+", str(definition).lower())
|
| 184 |
+
if w not in STOPWORDS and len(w) > 3
|
| 185 |
+
]
|
| 186 |
+
expanded.extend(defs[:3])
|
| 187 |
+
|
| 188 |
+
# Deduplicate
|
| 189 |
+
seen, out = set(), []
|
| 190 |
+
for w in expanded:
|
| 191 |
+
if w not in seen:
|
| 192 |
+
seen.add(w)
|
| 193 |
+
out.append(w)
|
| 194 |
+
return out
|
| 195 |
+
|
| 196 |
+
# --------------------------------------------------------------------
|
| 197 |
+
# 🔍 Unified Token Extraction
|
| 198 |
+
# --------------------------------------------------------------------
|
| 199 |
+
def extract_content_words(query: str):
|
| 200 |
+
"""Normalize, extract VAN tokens, and expand using domain synonyms & glossary."""
|
| 201 |
+
print(f"🔎 [NLP] Extracting VANs from query: {query}")
|
| 202 |
+
tokens = extract_van_tokens(query)
|
| 203 |
+
expanded = expand_with_glossary(tokens)
|
| 204 |
+
print(f"🔎 [NLP] VAN tokens → {expanded}")
|
| 205 |
+
return expanded
|
| 206 |
+
|
| 207 |
+
# --------------------------------------------------------------------
|
| 208 |
+
# 🧪 Self-test
|
| 209 |
+
# --------------------------------------------------------------------
|
| 210 |
+
if __name__ == "__main__":
|
| 211 |
+
sample = "Explain how EDC and eCRF relate to GCP compliance in a clinical trial?"
|
| 212 |
+
print(extract_content_words(sample))
|