Spaces:
Running
Running
Delete utils/nlp_helpers.py
Browse files- utils/nlp_helpers.py +0 -212
utils/nlp_helpers.py
DELETED
|
@@ -1,212 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
utils/nlp_helpers.py — Enhanced NLP Utilities for Clinical Research Chatbot
|
| 3 |
-
----------------------------------------------------------------------------
|
| 4 |
-
✅ Domain-aware abbreviation normalization (ICH-GCP, CDISC, FDA)
|
| 5 |
-
✅ Glossary-synonym expansion with prioritization
|
| 6 |
-
✅ Improved VAN (Verb–Adjective–Noun) normalization
|
| 7 |
-
✅ Compatible with Hugging Face Spaces (persistent NLTK path)
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
import os
|
| 11 |
-
import re
|
| 12 |
-
import json
|
| 13 |
-
import nltk
|
| 14 |
-
from nltk.corpus import stopwords
|
| 15 |
-
from nltk.stem import WordNetLemmatizer
|
| 16 |
-
|
| 17 |
-
# --------------------------------------------------------------------
|
| 18 |
-
# 🧠 NLTK Setup (force consistent path for Hugging Face Spaces)
|
| 19 |
-
# --------------------------------------------------------------------
|
| 20 |
-
NLTK_PATH = "/usr/local/share/nltk_data"
|
| 21 |
-
os.environ["NLTK_DATA"] = NLTK_PATH
|
| 22 |
-
nltk.data.path.clear()
|
| 23 |
-
nltk.data.path.append(NLTK_PATH)
|
| 24 |
-
|
| 25 |
-
required_pkgs = [
|
| 26 |
-
"punkt",
|
| 27 |
-
"punkt_tab",
|
| 28 |
-
"averaged_perceptron_tagger",
|
| 29 |
-
"averaged_perceptron_tagger_eng",
|
| 30 |
-
"stopwords",
|
| 31 |
-
"wordnet",
|
| 32 |
-
]
|
| 33 |
-
|
| 34 |
-
for pkg in required_pkgs:
|
| 35 |
-
try:
|
| 36 |
-
nltk.data.find(pkg)
|
| 37 |
-
except LookupError:
|
| 38 |
-
nltk.download(pkg, download_dir=NLTK_PATH, quiet=True)
|
| 39 |
-
|
| 40 |
-
STOPWORDS = set(stopwords.words("english"))
|
| 41 |
-
lemmatizer = WordNetLemmatizer()
|
| 42 |
-
|
| 43 |
-
# --------------------------------------------------------------------
|
| 44 |
-
# ⚕️ Clinical Abbreviation & Synonym Normalization
|
| 45 |
-
# --------------------------------------------------------------------
|
| 46 |
-
NORMALIZATION_MAP = {
|
| 47 |
-
# Core trial terms
|
| 48 |
-
r"\be[-_ ]?crf(s)?\b": "electronic case report form",
|
| 49 |
-
r"\bedc(s)?\b": "electronic data capture",
|
| 50 |
-
r"\bctms\b": "clinical trial management system",
|
| 51 |
-
r"\bcsr(s)?\b": "clinical study report",
|
| 52 |
-
r"\bcrf\b": "case report form",
|
| 53 |
-
# Data standards
|
| 54 |
-
r"\bsdtm(s)?\b": "study data tabulation model",
|
| 55 |
-
r"\badam(s)?\b": "analysis data model",
|
| 56 |
-
r"\bdefine[-_ ]?xml\b": "define xml metadata",
|
| 57 |
-
# Compliance / Ethics
|
| 58 |
-
r"\bgcp\b": "good clinical practice",
|
| 59 |
-
r"\biec\b": "independent ethics committee",
|
| 60 |
-
r"\birb\b": "institutional review board",
|
| 61 |
-
r"\bpi\b": "principal investigator",
|
| 62 |
-
r"\bsub[-_ ]?inv(es)?tigators?\b": "sub investigator",
|
| 63 |
-
r"\bsae(s)?\b": "serious adverse event",
|
| 64 |
-
r"\bae(s)?\b": "adverse event",
|
| 65 |
-
r"\bsusar(s)?\b": "suspected unexpected serious adverse reaction",
|
| 66 |
-
# Misc
|
| 67 |
-
r"\bsdv\b": "source data verification",
|
| 68 |
-
r"\bsop(s)?\b": "standard operating procedure",
|
| 69 |
-
r"\bqms\b": "quality management system",
|
| 70 |
-
r"\bicf\b": "informed consent form",
|
| 71 |
-
r"\bregulatory\b": "regulatory compliance",
|
| 72 |
-
}
|
| 73 |
-
|
| 74 |
-
DOMAIN_SYNONYMS = {
|
| 75 |
-
"edc": ["data entry system", "data management platform"],
|
| 76 |
-
"ecrf": ["electronic data entry form", "study data form"],
|
| 77 |
-
"gcp": ["good clinical practice", "ich e6", "regulatory compliance"],
|
| 78 |
-
"sdtm": ["data tabulation model", "cdisc standard"],
|
| 79 |
-
"adam": ["analysis dataset model", "statistical dataset"],
|
| 80 |
-
"ae": ["adverse event", "side effect"],
|
| 81 |
-
"sae": ["serious adverse event", "life threatening event"],
|
| 82 |
-
"susar": ["unexpected serious adverse reaction", "drug safety event"],
|
| 83 |
-
"ctms": ["trial management tool", "site tracking system"],
|
| 84 |
-
"pi": ["principal investigator", "study doctor"],
|
| 85 |
-
"csr": ["clinical study report", "final study document"],
|
| 86 |
-
"qms": ["quality management framework", "audit system"],
|
| 87 |
-
"sop": ["standard operating procedure", "company process document"],
|
| 88 |
-
}
|
| 89 |
-
|
| 90 |
-
GLOSSARY_PATH = "data/glossary.json"
|
| 91 |
-
|
| 92 |
-
# --------------------------------------------------------------------
|
| 93 |
-
# 🧹 Text Normalization
|
| 94 |
-
# --------------------------------------------------------------------
|
| 95 |
-
def normalize_query_text(text: str) -> str:
|
| 96 |
-
"""Lowercase, remove punctuation, and expand known abbreviations."""
|
| 97 |
-
text = text.strip().lower()
|
| 98 |
-
text = re.sub(r"[^\w\s\-]", " ", text)
|
| 99 |
-
text = re.sub(r"\s+", " ", text)
|
| 100 |
-
for pattern, repl in NORMALIZATION_MAP.items():
|
| 101 |
-
text = re.sub(pattern, repl, text)
|
| 102 |
-
return text.strip()
|
| 103 |
-
|
| 104 |
-
# --------------------------------------------------------------------
|
| 105 |
-
# ⚙️ VAN (Verb–Adjective–Noun) Extraction — IMPROVED
|
| 106 |
-
# --------------------------------------------------------------------
|
| 107 |
-
def extract_van_tokens(text: str):
|
| 108 |
-
"""
|
| 109 |
-
Extract and normalize core content words using VAN logic.
|
| 110 |
-
- Lowercases and expands abbreviations
|
| 111 |
-
- Removes stopwords and determiners ('a', 'an', 'the')
|
| 112 |
-
- Keeps only Verbs, Adjectives, and Nouns
|
| 113 |
-
- Lemmatizes words to singular or base form
|
| 114 |
-
- Deduplicates tokens
|
| 115 |
-
"""
|
| 116 |
-
text = normalize_query_text(text)
|
| 117 |
-
if not text:
|
| 118 |
-
return []
|
| 119 |
-
|
| 120 |
-
try:
|
| 121 |
-
tokens = nltk.word_tokenize(text)
|
| 122 |
-
pos_tags = nltk.pos_tag(tokens)
|
| 123 |
-
except LookupError:
|
| 124 |
-
for pkg in ["punkt", "punkt_tab", "averaged_perceptron_tagger"]:
|
| 125 |
-
nltk.download(pkg, download_dir=NLTK_PATH, quiet=True)
|
| 126 |
-
pos_tags = nltk.pos_tag(nltk.word_tokenize(text))
|
| 127 |
-
|
| 128 |
-
filtered = []
|
| 129 |
-
for w, t in pos_tags:
|
| 130 |
-
if not w.isalpha():
|
| 131 |
-
continue
|
| 132 |
-
# Remove determiners and common auxiliaries
|
| 133 |
-
if w in {"a", "an", "the", "is", "are", "was", "were", "be", "been", "being"}:
|
| 134 |
-
continue
|
| 135 |
-
if w in STOPWORDS:
|
| 136 |
-
continue
|
| 137 |
-
if len(w) <= 2:
|
| 138 |
-
continue
|
| 139 |
-
# Keep only N, V, J
|
| 140 |
-
if t.startswith(("N", "V", "J")):
|
| 141 |
-
pos = (
|
| 142 |
-
"v" if t.startswith("V")
|
| 143 |
-
else "a" if t.startswith("J")
|
| 144 |
-
else "n"
|
| 145 |
-
)
|
| 146 |
-
lemma = lemmatizer.lemmatize(w, pos)
|
| 147 |
-
filtered.append(lemma)
|
| 148 |
-
|
| 149 |
-
# Deduplicate while preserving order
|
| 150 |
-
seen, unique = set(), []
|
| 151 |
-
for w in filtered:
|
| 152 |
-
if w not in seen:
|
| 153 |
-
seen.add(w)
|
| 154 |
-
unique.append(w)
|
| 155 |
-
return unique
|
| 156 |
-
|
| 157 |
-
# --------------------------------------------------------------------
|
| 158 |
-
# 📘 Glossary-based Synonym Expansion
|
| 159 |
-
# --------------------------------------------------------------------
|
| 160 |
-
def expand_with_glossary(tokens: list):
|
| 161 |
-
"""Expand tokens using both internal DOMAIN_SYNONYMS and glossary.json."""
|
| 162 |
-
expanded = list(tokens)
|
| 163 |
-
|
| 164 |
-
# Add domain synonym expansion
|
| 165 |
-
for token in tokens:
|
| 166 |
-
key = token.lower()
|
| 167 |
-
if key in DOMAIN_SYNONYMS:
|
| 168 |
-
expanded.extend(DOMAIN_SYNONYMS[key])
|
| 169 |
-
|
| 170 |
-
# Glossary-driven enrichment
|
| 171 |
-
if os.path.exists(GLOSSARY_PATH):
|
| 172 |
-
try:
|
| 173 |
-
with open(GLOSSARY_PATH, "r", encoding="utf-8") as f:
|
| 174 |
-
glossary = json.load(f)
|
| 175 |
-
except Exception:
|
| 176 |
-
glossary = {}
|
| 177 |
-
for token in tokens:
|
| 178 |
-
t_norm = re.sub(r"[^a-z0-9]", "", token.lower())
|
| 179 |
-
for term, definition in glossary.items():
|
| 180 |
-
term_norm = re.sub(r"[^a-z0-9]", "", term.lower())
|
| 181 |
-
if t_norm in term_norm or term_norm in t_norm:
|
| 182 |
-
defs = [
|
| 183 |
-
w for w in re.findall(r"[a-z]+", str(definition).lower())
|
| 184 |
-
if w not in STOPWORDS and len(w) > 3
|
| 185 |
-
]
|
| 186 |
-
expanded.extend(defs[:3])
|
| 187 |
-
|
| 188 |
-
# Deduplicate
|
| 189 |
-
seen, out = set(), []
|
| 190 |
-
for w in expanded:
|
| 191 |
-
if w not in seen:
|
| 192 |
-
seen.add(w)
|
| 193 |
-
out.append(w)
|
| 194 |
-
return out
|
| 195 |
-
|
| 196 |
-
# --------------------------------------------------------------------
|
| 197 |
-
# 🔍 Unified Token Extraction
|
| 198 |
-
# --------------------------------------------------------------------
|
| 199 |
-
def extract_content_words(query: str):
|
| 200 |
-
"""Normalize, extract VAN tokens, and expand using domain synonyms & glossary."""
|
| 201 |
-
print(f"🔎 [NLP] Extracting VANs from query: {query}")
|
| 202 |
-
tokens = extract_van_tokens(query)
|
| 203 |
-
expanded = expand_with_glossary(tokens)
|
| 204 |
-
print(f"🔎 [NLP] VAN tokens → {expanded}")
|
| 205 |
-
return expanded
|
| 206 |
-
|
| 207 |
-
# --------------------------------------------------------------------
|
| 208 |
-
# 🧪 Self-test
|
| 209 |
-
# --------------------------------------------------------------------
|
| 210 |
-
if __name__ == "__main__":
|
| 211 |
-
sample = "Explain how EDC and eCRF relate to GCP compliance in a clinical trial?"
|
| 212 |
-
print(extract_content_words(sample))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|