Spaces:
Paused
Paused
Update api/ltx_server_refactored.py
Browse files- api/ltx_server_refactored.py +750 -340
api/ltx_server_refactored.py
CHANGED
|
@@ -1,68 +1,201 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 6 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
logging.set_verbosity_info()
|
| 12 |
-
logging.set_verbosity_debug()
|
| 13 |
-
LTXV_DEBUG=1
|
| 14 |
-
LTXV_FRAME_LOG_EVERY=8
|
| 15 |
-
import os, subprocess, shlex, tempfile
|
| 16 |
import torch
|
| 17 |
-
import
|
| 18 |
import numpy as np
|
| 19 |
-
import random
|
| 20 |
-
import os
|
| 21 |
-
import shlex
|
| 22 |
-
import yaml
|
| 23 |
-
from typing import List, Dict
|
| 24 |
-
from pathlib import Path
|
| 25 |
-
import imageio
|
| 26 |
from PIL import Image
|
| 27 |
-
import tempfile
|
| 28 |
-
from huggingface_hub import hf_hub_download
|
| 29 |
-
import sys
|
| 30 |
-
import subprocess
|
| 31 |
-
import gc
|
| 32 |
-
import shutil
|
| 33 |
-
import contextlib
|
| 34 |
-
import time
|
| 35 |
-
import traceback
|
| 36 |
from einops import rearrange
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
from managers.vae_manager import vae_manager_singleton
|
| 39 |
from tools.video_encode_tool import video_encode_tool_singleton
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
DEPS_DIR = Path("/data")
|
| 41 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
#
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
| 46 |
setup_script_path = "setup.py"
|
| 47 |
if not os.path.exists(setup_script_path):
|
| 48 |
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
|
| 49 |
return
|
|
|
|
|
|
|
| 50 |
try:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
print("[DEBUG] Setup concluído com sucesso.")
|
| 54 |
except subprocess.CalledProcessError as e:
|
| 55 |
-
print(f"[
|
| 56 |
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if not LTX_VIDEO_REPO_DIR.exists():
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
pad_h = target_h - orig_h
|
| 67 |
pad_w = target_w - orig_w
|
| 68 |
pad_top = pad_h // 2
|
|
@@ -70,368 +203,645 @@ def calculate_padding(orig_h, orig_w, target_h, target_w):
|
|
| 70 |
pad_left = pad_w // 2
|
| 71 |
pad_right = pad_w - pad_left
|
| 72 |
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
if not isinstance(tensor, torch.Tensor):
|
| 75 |
-
print(f"\n[INFO] '{name}' não é tensor.")
|
| 76 |
return
|
| 77 |
-
print(f"\n--- Tensor: {name} ---")
|
| 78 |
-
print(f" - Shape:
|
| 79 |
-
print(f" - Dtype:
|
| 80 |
print(f" - Device: {tensor.device}")
|
| 81 |
if tensor.numel() > 0:
|
| 82 |
try:
|
| 83 |
-
print(f" - Min
|
| 84 |
-
except
|
| 85 |
-
|
| 86 |
-
print("
|
| 87 |
-
|
| 88 |
-
add_deps_to_path()
|
| 89 |
-
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 90 |
-
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 91 |
-
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
|
| 92 |
-
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
|
| 93 |
-
from api.ltx.inference import (
|
| 94 |
-
create_ltx_video_pipeline,
|
| 95 |
-
create_latent_upsampler,
|
| 96 |
-
load_image_to_tensor_with_resize_and_crop,
|
| 97 |
-
seed_everething,
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
def load_image_to_tensor_with_resize_and_crop(
|
| 102 |
-
image_input: Union[str, Image.Image],
|
| 103 |
-
target_height: int = 512,
|
| 104 |
-
target_width: int = 768,
|
| 105 |
-
just_crop: bool = False,
|
| 106 |
-
) -> torch.Tensor:
|
| 107 |
-
"""Load and process an image into a tensor.
|
| 108 |
-
|
| 109 |
-
Args:
|
| 110 |
-
image_input: Either a file path (str) or a PIL Image object
|
| 111 |
-
target_height: Desired height of output tensor
|
| 112 |
-
target_width: Desired width of output tensor
|
| 113 |
-
just_crop: If True, only crop the image to the target size without resizing
|
| 114 |
-
"""
|
| 115 |
-
if isinstance(image_input, str):
|
| 116 |
-
image = Image.open(image_input).convert("RGB")
|
| 117 |
-
elif isinstance(image_input, Image.Image):
|
| 118 |
-
image = image_input
|
| 119 |
-
else:
|
| 120 |
-
raise ValueError("image_input must be either a file path or a PIL Image object")
|
| 121 |
-
|
| 122 |
-
input_width, input_height = image.size
|
| 123 |
-
aspect_ratio_target = target_width / target_height
|
| 124 |
-
aspect_ratio_frame = input_width / input_height
|
| 125 |
-
if aspect_ratio_frame > aspect_ratio_target:
|
| 126 |
-
new_width = int(input_height * aspect_ratio_target)
|
| 127 |
-
new_height = input_height
|
| 128 |
-
x_start = (input_width - new_width) // 2
|
| 129 |
-
y_start = 0
|
| 130 |
-
else:
|
| 131 |
-
new_width = input_width
|
| 132 |
-
new_height = int(input_width / aspect_ratio_target)
|
| 133 |
-
x_start = 0
|
| 134 |
-
y_start = (input_height - new_height) // 2
|
| 135 |
-
|
| 136 |
-
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
|
| 137 |
-
if not just_crop:
|
| 138 |
-
image = image.resize((target_width, target_height))
|
| 139 |
-
|
| 140 |
-
image = np.array(image)
|
| 141 |
-
image = cv2.GaussianBlur(image, (3, 3), 0)
|
| 142 |
-
frame_tensor = torch.from_numpy(image).float()
|
| 143 |
-
frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
|
| 144 |
-
frame_tensor = frame_tensor.permute(2, 0, 1)
|
| 145 |
-
frame_tensor = (frame_tensor / 127.5) - 1.0
|
| 146 |
-
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
|
| 147 |
-
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
| 148 |
-
|
| 149 |
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
class VideoService:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
def __init__(self):
|
|
|
|
| 153 |
t0 = time.perf_counter()
|
| 154 |
-
print("[
|
| 155 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 156 |
-
self.config = self._load_config()
|
| 157 |
-
|
| 158 |
-
self.pipeline.
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
self.
|
| 162 |
vae_manager_singleton.attach_pipeline(
|
| 163 |
self.pipeline,
|
| 164 |
device=self.device,
|
| 165 |
autocast_dtype=self.runtime_autocast_dtype
|
| 166 |
)
|
| 167 |
self._tmp_dirs = set()
|
| 168 |
-
|
|
|
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
with open(config_path, "r") as file:
|
| 174 |
-
return yaml.safe_load(file)
|
| 175 |
|
| 176 |
-
def
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
try:
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
except Exception as e:
|
| 188 |
-
print(f"[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
try:
|
| 190 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
except Exception as e:
|
| 192 |
-
print(f"[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
t0 = time.perf_counter()
|
| 196 |
LTX_REPO = "Lightricks/LTX-Video"
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
filename=self.config["checkpoint_path"],
|
| 201 |
-
local_dir=os.getenv("HF_HOME"),
|
| 202 |
-
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 203 |
-
token=os.getenv("HF_TOKEN"),
|
| 204 |
-
)
|
| 205 |
-
self.config["checkpoint_path"] = distilled_model_path
|
| 206 |
-
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
|
| 207 |
-
|
| 208 |
-
print("[DEBUG] Baixando upscaler espacial...")
|
| 209 |
-
spatial_upscaler_path = hf_hub_download(
|
| 210 |
-
repo_id=LTX_REPO,
|
| 211 |
-
filename=self.config["spatial_upscaler_model_path"],
|
| 212 |
-
local_dir=os.getenv("HF_HOME"),
|
| 213 |
-
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 214 |
token=os.getenv("HF_TOKEN")
|
| 215 |
)
|
| 216 |
-
self.config["
|
| 217 |
-
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
|
| 218 |
|
| 219 |
-
print("[
|
| 220 |
pipeline = create_ltx_video_pipeline(
|
| 221 |
ckpt_path=self.config["checkpoint_path"],
|
| 222 |
precision=self.config["precision"],
|
| 223 |
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 224 |
sampler=self.config["sampler"],
|
| 225 |
-
device="cpu",
|
| 226 |
-
enhance_prompt=False
|
| 227 |
-
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
|
| 228 |
-
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
|
| 229 |
)
|
| 230 |
-
print("[
|
| 231 |
|
| 232 |
latent_upsampler = None
|
| 233 |
if self.config.get("spatial_upscaler_model_path"):
|
| 234 |
-
print("[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 236 |
-
print("[
|
| 237 |
-
|
|
|
|
| 238 |
return pipeline, latent_upsampler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
def
|
|
|
|
| 241 |
prec = str(self.config.get("precision", "")).lower()
|
| 242 |
-
self.runtime_autocast_dtype = torch.float32
|
| 243 |
if prec in ["float8_e4m3fn", "bfloat16"]:
|
| 244 |
-
|
| 245 |
elif prec == "mixed_precision":
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
def _register_tmp_dir(self, d: str):
|
| 249 |
-
if d and os.path.isdir(d):
|
| 250 |
-
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
|
| 251 |
|
| 252 |
@torch.no_grad()
|
| 253 |
-
def
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 258 |
-
upsampled_latents = self.latent_upsampler(latents_unnormalized)
|
| 259 |
-
return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 260 |
-
except Exception as e:
|
| 261 |
-
pass
|
| 262 |
-
finally:
|
| 263 |
-
torch.cuda.empty_cache()
|
| 264 |
-
torch.cuda.ipc_collect()
|
| 265 |
-
self.finalize(keep_paths=[])
|
| 266 |
-
|
| 267 |
-
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
|
| 268 |
-
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 269 |
-
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 270 |
-
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
|
| 274 |
-
output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4")
|
| 275 |
-
video_encode_tool_singleton.save_video_from_tensor(
|
| 276 |
-
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
|
| 277 |
-
)
|
| 278 |
-
final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4")
|
| 279 |
-
shutil.move(output_path, final_path)
|
| 280 |
-
print(f"[DEBUG] Vídeo salvo em: {final_path}")
|
| 281 |
-
return final_path
|
| 282 |
-
|
| 283 |
-
# ==============================================================================
|
| 284 |
-
# --- FUNÇÕES MODULARES COM A LÓGICA DE CHUNKING SIMPLIFICADA ---
|
| 285 |
-
# ==============================================================================
|
| 286 |
-
|
| 287 |
-
def _prepare_condition_items(self, items_list: List[Tuple], height: int, width: int, num_frames: int) -> List[ConditioningItem]:
|
| 288 |
-
"""Prepara os tensores de condicionamento a partir de imagens ou tensores."""
|
| 289 |
-
if not items_list:
|
| 290 |
-
return []
|
| 291 |
-
|
| 292 |
-
height, width = self._calculate_downscaled_dims(height, width)
|
| 293 |
-
|
| 294 |
-
height_padded = ((height - 1) // 8 + 1) * 8
|
| 295 |
-
width_padded = ((width - 1) // 8 + 1) * 8
|
| 296 |
-
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
tensor = self._prepare_conditioning_tensor_from_path(media, height, width, padding_values)
|
| 302 |
-
else: # Assume que é um tensor
|
| 303 |
-
tensor = media.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 304 |
-
|
| 305 |
-
# Garante que o frame de condicionamento esteja dentro dos limites do vídeo
|
| 306 |
-
safe_frame_idx = max(0, min(int(frame_idx), num_frames - 1))
|
| 307 |
-
conditioning_items.append(ConditioningItem(tensor, safe_frame_idx, float(weight)))
|
| 308 |
-
|
| 309 |
-
return conditioning_items
|
| 310 |
|
|
|
|
|
|
|
|
|
|
| 311 |
def _prepare_conditioning_tensor_from_path(self, filepath: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
|
| 312 |
"""Carrega uma imagem, redimensiona, aplica padding e move para o dispositivo."""
|
| 313 |
-
tensor =
|
| 314 |
tensor = F.pad(tensor, padding)
|
| 315 |
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 316 |
-
|
| 317 |
|
| 318 |
-
def
|
| 319 |
-
|
| 320 |
-
seed_everething(used_seed)
|
| 321 |
-
FPS = 24.0
|
| 322 |
-
actual_num_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
|
| 323 |
height_padded = ((height - 1) // 8 + 1) * 8
|
| 324 |
width_padded = ((width - 1) // 8 + 1) * 8
|
| 325 |
-
|
| 326 |
-
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 327 |
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 328 |
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 329 |
-
x_width = int(width_padded * downscale_factor)
|
| 330 |
-
downscaled_width = x_width - (x_width % vae_scale_factor)
|
| 331 |
-
x_height = int(height_padded * downscale_factor)
|
| 332 |
-
downscaled_height = x_height - (x_height % vae_scale_factor)
|
| 333 |
-
first_pass_kwargs = {
|
| 334 |
-
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
|
| 335 |
-
"num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 336 |
-
"output_type": "latent", "conditioning_items": conditioning_items, "guidance_scale": float(guidance_scale),
|
| 337 |
-
**(self.config.get("first_pass", {}))
|
| 338 |
-
}
|
| 339 |
-
try:
|
| 340 |
-
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 341 |
-
latents = self.pipeline(**first_pass_kwargs).images
|
| 342 |
-
pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 343 |
-
video_path = self._save_and_log_video(pixel_tensor, "low_res_video", FPS, temp_dir, results_dir, used_seed)
|
| 344 |
-
latents_cpu = latents.detach().to("cpu")
|
| 345 |
-
tensor_path = os.path.join(results_dir, f"latents_low_res_{used_seed}.pt")
|
| 346 |
-
torch.save(latents_cpu, tensor_path)
|
| 347 |
-
return video_path, tensor_path, used_seed
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
|
| 357 |
-
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 358 |
-
seed_everething(used_seed)
|
| 359 |
-
temp_dir = tempfile.mkdtemp(prefix="ltxv_up_"); self._register_tmp_dir(temp_dir)
|
| 360 |
-
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 361 |
-
latents_low = torch.load(latents_path).to(self.device)
|
| 362 |
-
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 363 |
-
upsampled_latents = self._upsample_latents_internal(latents_low)
|
| 364 |
-
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents_low)
|
| 365 |
-
del latents_low; torch.cuda.empty_cache()
|
| 366 |
-
|
| 367 |
-
# --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
|
| 368 |
-
total_frames = upsampled_latents.shape[2]
|
| 369 |
-
# Garante que mid_point seja pelo menos 1 para evitar um segundo chunk vazio se houver poucos frames
|
| 370 |
-
mid_point = max(1, total_frames // 2)
|
| 371 |
-
chunk1 = upsampled_latents[:, :, :mid_point, :, :]
|
| 372 |
-
# O segundo chunk começa um frame antes para criar o overlap
|
| 373 |
-
chunk2 = upsampled_latents[:, :, mid_point - 1:, :, :]
|
| 374 |
-
|
| 375 |
-
final_latents_list = []
|
| 376 |
-
for i, chunk in enumerate([chunk1, chunk2]):
|
| 377 |
-
if chunk.shape[2] <= 1: continue # Pula chunks inválidos ou vazios
|
| 378 |
-
second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor
|
| 379 |
-
second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor
|
| 380 |
-
second_pass_kwargs = {
|
| 381 |
-
"prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height, "width": second_pass_width,
|
| 382 |
-
"num_frames": chunk.shape[2], "latents": chunk, "guidance_scale": float(guidance_scale),
|
| 383 |
-
"output_type": "latent", "generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 384 |
-
**(self.config.get("second_pass", {}))
|
| 385 |
-
}
|
| 386 |
-
refined_chunk = self.pipeline(**second_pass_kwargs).images
|
| 387 |
-
# Remove o overlap do primeiro chunk refinado antes de juntar
|
| 388 |
-
if i == 0:
|
| 389 |
-
final_latents_list.append(refined_chunk[:, :, :-1, :, :])
|
| 390 |
-
else:
|
| 391 |
-
final_latents_list.append(refined_chunk)
|
| 392 |
-
|
| 393 |
-
final_latents = torch.cat(final_latents_list, dim=2)
|
| 394 |
-
log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais")
|
| 395 |
-
|
| 396 |
-
latents_cpu = final_latents.detach().to("cpu")
|
| 397 |
-
tensor_path = os.path.join(results_dir, f"latents_refined_{used_seed}.pt")
|
| 398 |
-
torch.save(latents_cpu, tensor_path)
|
| 399 |
-
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 400 |
-
video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed)
|
| 401 |
-
return video_path, tensor_path
|
| 402 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
if chunk.shape[2] == 0: continue
|
| 422 |
-
pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 423 |
-
# Remove o overlap do primeiro chunk de pixels
|
| 424 |
-
if i == 0:
|
| 425 |
-
pixel_chunks_to_concat.append(pixel_chunk[:, :, :-1, :, :])
|
| 426 |
-
else:
|
| 427 |
-
pixel_chunks_to_concat.append(pixel_chunk)
|
| 428 |
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
|
| 434 |
-
# --- INSTANCIAÇÃO DO SERVIÇO ---
|
| 435 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 436 |
video_generation_service = VideoService()
|
| 437 |
print("Instância do VideoService pronta para uso.")
|
|
|
|
| 1 |
+
# ltx_server_clean_refactor.py — VideoService (Modular Version with Simple Overlap Chunking)
|
| 2 |
|
| 3 |
+
# ==============================================================================
|
| 4 |
+
# 0. CONFIGURAÇÃO DE AMBIENTE E IMPORTAÇÕES
|
| 5 |
+
# ==============================================================================
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import gc
|
| 9 |
+
import yaml
|
| 10 |
+
import time
|
| 11 |
+
import json
|
| 12 |
+
import random
|
| 13 |
+
import shutil
|
| 14 |
import warnings
|
| 15 |
+
import tempfile
|
| 16 |
+
import traceback
|
| 17 |
+
import subprocess
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
from typing import List, Dict, Optional, Tuple, Union
|
| 20 |
+
import cv2
|
| 21 |
+
|
| 22 |
+
# --- Configurações de Logging e Avisos ---
|
| 23 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 24 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 25 |
+
from huggingface_hub import logging as hf_logging
|
| 26 |
+
hf_logging.set_verbosity_error()
|
| 27 |
+
|
| 28 |
+
# --- Importações de Bibliotecas de ML/Processamento ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
import torch
|
| 30 |
+
import torch.nn.functional as F
|
| 31 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
from einops import rearrange
|
| 34 |
+
from huggingface_hub import hf_hub_download
|
| 35 |
+
from safetensors import safe_open
|
| 36 |
+
|
| 37 |
from managers.vae_manager import vae_manager_singleton
|
| 38 |
from tools.video_encode_tool import video_encode_tool_singleton
|
| 39 |
+
|
| 40 |
+
from api.aduc_ltx_latent_patch import LTXLatentConditioningPatch, PatchedConditioningItem
|
| 41 |
+
|
| 42 |
+
# --- Constantes Globais ---
|
| 43 |
+
LTXV_DEBUG = True # Mude para False para desativar logs de debug
|
| 44 |
+
LTXV_FRAME_LOG_EVERY = 8
|
| 45 |
DEPS_DIR = Path("/data")
|
| 46 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 47 |
+
RESULTS_DIR = Path("/app/output")
|
| 48 |
+
DEFAULT_FPS = 24.0
|
| 49 |
|
| 50 |
+
# ==============================================================================
|
| 51 |
+
# 1. SETUP E FUNÇÕES AUXILIARES DE AMBIENTE
|
| 52 |
+
# ==============================================================================
|
| 53 |
+
|
| 54 |
+
def _run_setup_script():
|
| 55 |
+
"""Executa o script setup.py se o repositório LTX-Video não existir."""
|
| 56 |
setup_script_path = "setup.py"
|
| 57 |
if not os.path.exists(setup_script_path):
|
| 58 |
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
|
| 59 |
return
|
| 60 |
+
|
| 61 |
+
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Executando setup.py...")
|
| 62 |
try:
|
| 63 |
+
subprocess.run([sys.executable, setup_script_path], check=True, capture_output=True, text=True)
|
| 64 |
+
print("[DEBUG] Script 'setup.py' concluído com sucesso.")
|
|
|
|
| 65 |
except subprocess.CalledProcessError as e:
|
| 66 |
+
print(f"[ERROR] Falha ao executar 'setup.py' (código {e.returncode}).\nOutput:\n{e.stdout}\n{e.stderr}")
|
| 67 |
sys.exit(1)
|
| 68 |
+
|
| 69 |
+
def add_deps_to_path(repo_path: Path):
|
| 70 |
+
"""Adiciona o diretório do repositório ao sys.path para importações locais."""
|
| 71 |
+
resolved_path = str(repo_path.resolve())
|
| 72 |
+
if resolved_path not in sys.path:
|
| 73 |
+
sys.path.insert(0, resolved_path)
|
| 74 |
+
if LTXV_DEBUG:
|
| 75 |
+
print(f"[DEBUG] Adicionado ao sys.path: {resolved_path}")
|
| 76 |
+
|
| 77 |
+
# --- Execução da configuração inicial ---
|
| 78 |
if not LTX_VIDEO_REPO_DIR.exists():
|
| 79 |
+
_run_setup_script()
|
| 80 |
+
add_deps_to_path(LTX_VIDEO_REPO_DIR)
|
| 81 |
+
|
| 82 |
+
# --- Importações Dependentes do Path Adicionado ---
|
| 83 |
+
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
|
| 84 |
+
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
|
| 85 |
+
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
|
| 86 |
+
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXVideoPipeline
|
| 87 |
+
from transformers import T5EncoderModel, T5Tokenizer, AutoModelForCausalLM, AutoProcessor, AutoTokenizer
|
| 88 |
+
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
| 89 |
+
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
| 90 |
+
from ltx_video.models.transformers.transformer3d import Transformer3DModel
|
| 91 |
+
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 92 |
+
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 93 |
+
import ltx_video.pipelines.crf_compressor as crf_compressor
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def create_latent_upsampler(latent_upsampler_model_path: str, device: str):
|
| 97 |
+
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
|
| 98 |
+
latent_upsampler.to(device)
|
| 99 |
+
latent_upsampler.eval()
|
| 100 |
+
return latent_upsampler
|
| 101 |
+
|
| 102 |
+
def create_ltx_video_pipeline(
|
| 103 |
+
ckpt_path: str,
|
| 104 |
+
precision: str,
|
| 105 |
+
text_encoder_model_name_or_path: str,
|
| 106 |
+
sampler: Optional[str] = None,
|
| 107 |
+
device: Optional[str] = None,
|
| 108 |
+
enhance_prompt: bool = False,
|
| 109 |
+
prompt_enhancer_image_caption_model_name_or_path: Optional[str] = None,
|
| 110 |
+
prompt_enhancer_llm_model_name_or_path: Optional[str] = None,
|
| 111 |
+
) -> LTXVideoPipeline:
|
| 112 |
+
ckpt_path = Path(ckpt_path)
|
| 113 |
+
assert os.path.exists(
|
| 114 |
+
ckpt_path
|
| 115 |
+
), f"Ckpt path provided (--ckpt_path) {ckpt_path} does not exist"
|
| 116 |
+
|
| 117 |
+
with safe_open(ckpt_path, framework="pt") as f:
|
| 118 |
+
metadata = f.metadata()
|
| 119 |
+
config_str = metadata.get("config")
|
| 120 |
+
configs = json.loads(config_str)
|
| 121 |
+
allowed_inference_steps = configs.get("allowed_inference_steps", None)
|
| 122 |
+
|
| 123 |
+
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
|
| 124 |
+
transformer = Transformer3DModel.from_pretrained(ckpt_path)
|
| 125 |
+
|
| 126 |
+
# Use constructor if sampler is specified, otherwise use from_pretrained
|
| 127 |
+
if sampler == "from_checkpoint" or not sampler:
|
| 128 |
+
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
|
| 129 |
+
else:
|
| 130 |
+
scheduler = RectifiedFlowScheduler(
|
| 131 |
+
sampler=("Uniform" if sampler.lower() == "uniform" else "LinearQuadratic")
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
| 135 |
+
text_encoder_model_name_or_path, subfolder="text_encoder"
|
| 136 |
+
)
|
| 137 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
| 138 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
| 139 |
+
text_encoder_model_name_or_path, subfolder="tokenizer"
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
transformer = transformer.to(device)
|
| 143 |
+
vae = vae.to(device)
|
| 144 |
+
text_encoder = text_encoder.to(device)
|
| 145 |
+
|
| 146 |
+
if enhance_prompt:
|
| 147 |
+
prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained(
|
| 148 |
+
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
|
| 149 |
+
)
|
| 150 |
+
prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained(
|
| 151 |
+
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
|
| 152 |
+
)
|
| 153 |
+
prompt_enhancer_llm_model = AutoModelForCausalLM.from_pretrained(
|
| 154 |
+
prompt_enhancer_llm_model_name_or_path,
|
| 155 |
+
torch_dtype="bfloat16",
|
| 156 |
+
)
|
| 157 |
+
prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained(
|
| 158 |
+
prompt_enhancer_llm_model_name_or_path,
|
| 159 |
+
)
|
| 160 |
+
else:
|
| 161 |
+
prompt_enhancer_image_caption_model = None
|
| 162 |
+
prompt_enhancer_image_caption_processor = None
|
| 163 |
+
prompt_enhancer_llm_model = None
|
| 164 |
+
prompt_enhancer_llm_tokenizer = None
|
| 165 |
+
|
| 166 |
+
vae = vae.to(torch.bfloat16)
|
| 167 |
+
if precision == "bfloat16" and transformer.dtype != torch.bfloat16:
|
| 168 |
+
transformer = transformer.to(torch.bfloat16)
|
| 169 |
+
text_encoder = text_encoder.to(torch.bfloat16)
|
| 170 |
+
|
| 171 |
+
# Use submodels for the pipeline
|
| 172 |
+
submodel_dict = {
|
| 173 |
+
"transformer": transformer,
|
| 174 |
+
"patchifier": patchifier,
|
| 175 |
+
"text_encoder": text_encoder,
|
| 176 |
+
"tokenizer": tokenizer,
|
| 177 |
+
"scheduler": scheduler,
|
| 178 |
+
"vae": vae,
|
| 179 |
+
"prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model,
|
| 180 |
+
"prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor,
|
| 181 |
+
"prompt_enhancer_llm_model": prompt_enhancer_llm_model,
|
| 182 |
+
"prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer,
|
| 183 |
+
"allowed_inference_steps": allowed_inference_steps,
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
pipeline = LTXVideoPipeline(**submodel_dict)
|
| 187 |
+
|
| 188 |
+
LTXLatentConditioningPatch.apply()
|
| 189 |
+
|
| 190 |
+
pipeline = pipeline.to(device)
|
| 191 |
+
return pipeline
|
| 192 |
+
|
| 193 |
+
# ==============================================================================
|
| 194 |
+
# 2. FUNÇÕES AUXILIARES DE PROCESSAMENTO
|
| 195 |
+
# ==============================================================================
|
| 196 |
+
|
| 197 |
+
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
|
| 198 |
+
"""Calcula o preenchimento para centralizar uma imagem em uma nova dimensão."""
|
| 199 |
pad_h = target_h - orig_h
|
| 200 |
pad_w = target_w - orig_w
|
| 201 |
pad_top = pad_h // 2
|
|
|
|
| 203 |
pad_left = pad_w // 2
|
| 204 |
pad_right = pad_w - pad_left
|
| 205 |
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 206 |
+
|
| 207 |
+
def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
|
| 208 |
+
"""Exibe informações detalhadas sobre um tensor para depuração."""
|
| 209 |
if not isinstance(tensor, torch.Tensor):
|
| 210 |
+
print(f"\n[INFO] '{name}' não é um tensor.")
|
| 211 |
return
|
| 212 |
+
print(f"\n--- Tensor Info: {name} ---")
|
| 213 |
+
print(f" - Shape: {tuple(tensor.shape)}")
|
| 214 |
+
print(f" - Dtype: {tensor.dtype}")
|
| 215 |
print(f" - Device: {tensor.device}")
|
| 216 |
if tensor.numel() > 0:
|
| 217 |
try:
|
| 218 |
+
print(f" - Stats: Min={tensor.min().item():.4f}, Max={tensor.max().item():.4f}, Mean={tensor.mean().item():.4f}")
|
| 219 |
+
except RuntimeError:
|
| 220 |
+
print(" - Stats: Não foi possível calcular (ex: tensores bool).")
|
| 221 |
+
print("-" * 30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
+
# ==============================================================================
|
| 224 |
+
# 3. CLASSE PRINCIPAL DO SERVIÇO DE VÍDEO
|
| 225 |
+
# ==============================================================================
|
| 226 |
|
| 227 |
class VideoService:
|
| 228 |
+
"""
|
| 229 |
+
Serviço encapsulado para gerar vídeos usando a pipeline LTX-Video.
|
| 230 |
+
Gerencia o carregamento de modelos, pré-processamento, geração em múltiplos
|
| 231 |
+
passos (baixa resolução, upscale com denoise) e pós-processamento.
|
| 232 |
+
"""
|
| 233 |
def __init__(self):
|
| 234 |
+
"""Inicializa o serviço, carregando configurações e modelos."""
|
| 235 |
t0 = time.perf_counter()
|
| 236 |
+
print("[INFO] Inicializando VideoService...")
|
| 237 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 238 |
+
self.config = self._load_config("ltxv-13b-0.9.8-distilled-fp8.yaml")
|
| 239 |
+
|
| 240 |
+
self.pipeline, self.latent_upsampler = self._load_models_from_hub()
|
| 241 |
+
self._move_models_to_device()
|
| 242 |
+
|
| 243 |
+
self.runtime_autocast_dtype = self._get_precision_dtype()
|
| 244 |
vae_manager_singleton.attach_pipeline(
|
| 245 |
self.pipeline,
|
| 246 |
device=self.device,
|
| 247 |
autocast_dtype=self.runtime_autocast_dtype
|
| 248 |
)
|
| 249 |
self._tmp_dirs = set()
|
| 250 |
+
RESULTS_DIR.mkdir(exist_ok=True)
|
| 251 |
+
print(f"[INFO] VideoService pronto. Tempo de inicialização: {time.perf_counter()-t0:.2f}s")
|
| 252 |
|
| 253 |
+
# --------------------------------------------------------------------------
|
| 254 |
+
# --- Métodos Públicos (API do Serviço) ---
|
| 255 |
+
# --------------------------------------------------------------------------
|
|
|
|
|
|
|
| 256 |
|
| 257 |
+
def _load_image_to_tensor_with_resize_and_crop(
|
| 258 |
+
self,
|
| 259 |
+
image_input: Union[str, Image.Image],
|
| 260 |
+
target_height: int = 512,
|
| 261 |
+
target_width: int = 768,
|
| 262 |
+
just_crop: bool = False,
|
| 263 |
+
) -> torch.Tensor:
|
| 264 |
+
"""Load and process an image into a tensor.
|
| 265 |
+
|
| 266 |
+
Args:
|
| 267 |
+
image_input: Either a file path (str) or a PIL Image object
|
| 268 |
+
target_height: Desired height of output tensor
|
| 269 |
+
target_width: Desired width of output tensor
|
| 270 |
+
just_crop: If True, only crop the image to the target size without resizing
|
| 271 |
+
"""
|
| 272 |
+
if isinstance(image_input, str):
|
| 273 |
+
image = Image.open(image_input).convert("RGB")
|
| 274 |
+
elif isinstance(image_input, Image.Image):
|
| 275 |
+
image = image_input
|
| 276 |
+
else:
|
| 277 |
+
raise ValueError("image_input must be either a file path or a PIL Image object")
|
| 278 |
+
|
| 279 |
+
input_width, input_height = image.size
|
| 280 |
+
aspect_ratio_target = target_width / target_height
|
| 281 |
+
aspect_ratio_frame = input_width / input_height
|
| 282 |
+
if aspect_ratio_frame > aspect_ratio_target:
|
| 283 |
+
new_width = int(input_height * aspect_ratio_target)
|
| 284 |
+
new_height = input_height
|
| 285 |
+
x_start = (input_width - new_width) // 2
|
| 286 |
+
y_start = 0
|
| 287 |
+
else:
|
| 288 |
+
new_width = input_width
|
| 289 |
+
new_height = int(input_width / aspect_ratio_target)
|
| 290 |
+
x_start = 0
|
| 291 |
+
y_start = (input_height - new_height) // 2
|
| 292 |
+
|
| 293 |
+
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
|
| 294 |
+
if not just_crop:
|
| 295 |
+
image = image.resize((target_width, target_height))
|
| 296 |
+
|
| 297 |
+
image = np.array(image)
|
| 298 |
+
image = cv2.GaussianBlur(image, (3, 3), 0)
|
| 299 |
+
frame_tensor = torch.from_numpy(image).float()
|
| 300 |
+
frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
|
| 301 |
+
frame_tensor = frame_tensor.permute(2, 0, 1)
|
| 302 |
+
frame_tensor = (frame_tensor / 127.5) - 1.0
|
| 303 |
+
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
|
| 304 |
+
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def generate_low_resolution1(self, prompt: str, negative_prompt: str, height: int, width: int, duration_secs: float, guidance_scale: float, seed: Optional[int] = None, conditioning_items: Optional[List[PatchedConditioningItem]] = None) -> Tuple[str, str, int]:
|
| 309 |
+
"""
|
| 310 |
+
Gera um vídeo de baixa resolução e retorna os caminhos para o vídeo e os latentes.
|
| 311 |
+
"""
|
| 312 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 313 |
+
#self._seed_everething(used_seed)
|
| 314 |
+
|
| 315 |
+
actual_num_frames = max(9, int(round((round(duration_secs * DEFAULT_FPS) - 1) / 8.0) * 8 + 1))
|
| 316 |
+
|
| 317 |
+
downscaled_height, downscaled_width = self._calculate_downscaled_dims(height, width)
|
| 318 |
+
|
| 319 |
+
first_pass_kwargs = {
|
| 320 |
+
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height,
|
| 321 |
+
"width": downscaled_width, "num_frames": actual_num_frames, "frame_rate": int(DEFAULT_FPS),
|
| 322 |
+
"generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 323 |
+
"output_type": "latent", "conditioning_items": conditioning_items,
|
| 324 |
+
"guidance_scale": float(guidance_scale), **(self.config.get("first_pass", {}))
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_")
|
| 328 |
+
self._register_tmp_dir(temp_dir)
|
| 329 |
+
|
| 330 |
try:
|
| 331 |
+
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
|
| 332 |
+
latents = self.pipeline(**first_pass_kwargs).images
|
| 333 |
+
#pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 334 |
+
#video_path = self._save_video_from_tensor(pixel_tensor, "low_res_video", used_seed, temp_dir)
|
| 335 |
+
latents_path = self._save_latents_to_disk(latents, "latents_low_res", used_seed)
|
| 336 |
+
|
| 337 |
+
log_tensor_info(latents, "first_pass_lat" )
|
| 338 |
+
self._finalize()
|
| 339 |
+
|
| 340 |
+
final_video_path, final_latents_path = self.generate_upscale_denoise(
|
| 341 |
+
latents_path=latents_path,
|
| 342 |
+
prompt=prompt,
|
| 343 |
+
negative_prompt=negative_prompt,
|
| 344 |
+
guidance_scale=guidance_scale,
|
| 345 |
+
seed=used_seed
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
print(f"[SUCCESS] PASSO 2 concluído. Vídeo final em: {final_video_path}")
|
| 349 |
+
|
| 350 |
+
return final_video_path, final_latents_path, used_seed
|
| 351 |
+
|
| 352 |
+
except Exception as e:
|
| 353 |
+
print(f"[ERROR] Falha na geração de baixa resolução: {e}")
|
| 354 |
+
traceback.print_exc()
|
| 355 |
+
raise
|
| 356 |
+
finally:
|
| 357 |
+
self._finalize()
|
| 358 |
+
|
| 359 |
+
# Em api/ltx_server_refactored.py, dentro da classe VideoService
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
# ADICIONE A FUNÇÃO ABAIXO
|
| 363 |
+
@torch.no_grad()
|
| 364 |
+
def _image_to_latents(self, image_input: Union[str, Image.Image], height: int, width: int) -> torch.Tensor:
|
| 365 |
+
"""
|
| 366 |
+
Converte uma imagem (caminho ou PIL) em um tensor de latentes 5D.
|
| 367 |
+
Retorna: Tensor na forma [1, C_lat, 1, H_lat, W_lat]
|
| 368 |
+
"""
|
| 369 |
+
print(f"[DEBUG] Codificando imagem para latente ({height}x{width})...")
|
| 370 |
+
# 1. Carrega a imagem e a transforma em um tensor de pixel 5D
|
| 371 |
+
pixel_tensor = self._load_image_to_tensor_with_resize_and_crop(
|
| 372 |
+
image_input, target_height=height, target_width=width
|
| 373 |
+
)
|
| 374 |
+
pixel_tensor_gpu = pixel_tensor.to(self.device, dtype=self.pipeline.vae.dtype)
|
| 375 |
+
|
| 376 |
+
# 2. Usa a VAE para codificar o tensor de pixel em um tensor de latentes
|
| 377 |
+
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
|
| 378 |
+
# O vae_encode da pipeline já lida com tensores 5D
|
| 379 |
+
latents = self.pipeline.vae.encode(pixel_tensor_gpu).latent_dist.sample()
|
| 380 |
+
|
| 381 |
+
# 3. Aplica o fator de escala (importante para consistência)
|
| 382 |
+
if hasattr(self.pipeline.vae.config, "scaling_factor"):
|
| 383 |
+
latents = latents * self.pipeline.vae.config.scaling_factor
|
| 384 |
+
|
| 385 |
+
print(f"[DEBUG] Imagem codificada para latente com shape: {latents.shape}")
|
| 386 |
+
return latents
|
| 387 |
+
|
| 388 |
+
def _prepare_condition_items(self, items_list: List[Tuple], height: int, width: int) -> List[PatchedConditioningItem]:
|
| 389 |
+
"""
|
| 390 |
+
Prepara os itens de condicionamento.
|
| 391 |
+
Recebe uma lista [Imagem, frame, peso], converte a Imagem para LATENTE
|
| 392 |
+
e cria uma lista de PatchedConditioningItem com o tensor em `latents`.
|
| 393 |
+
"""
|
| 394 |
+
if not items_list:
|
| 395 |
+
return []
|
| 396 |
+
|
| 397 |
+
conditioning_items = []
|
| 398 |
+
for media_input, frame_idx, weight in items_list:
|
| 399 |
+
# 1. USA A NOVA FUNÇÃO PARA OBTER O TENSOR DE LATENTES DIRETAMENTE
|
| 400 |
+
latent_tensor = self._image_to_latents(media_input, height, width)
|
| 401 |
+
|
| 402 |
+
safe_frame_idx = int(frame_idx)
|
| 403 |
+
|
| 404 |
+
# 2. CRIA O PatchedConditioningItem COM O CAMPO `latents` PREENCHIDO
|
| 405 |
+
item = PatchedConditioningItem(
|
| 406 |
+
media_frame_number=safe_frame_idx,
|
| 407 |
+
conditioning_strength=float(weight),
|
| 408 |
+
media_item=None, # Importante: media_item é None
|
| 409 |
+
latents=latent_tensor # O latente pré-calculado vai aqui!
|
| 410 |
+
)
|
| 411 |
+
conditioning_items.append(item)
|
| 412 |
+
|
| 413 |
+
print(f"[INFO] Preparados {len(conditioning_items)} itens de condicionamento com latentes pré-codificados.")
|
| 414 |
+
return conditioning_items
|
| 415 |
+
|
| 416 |
+
def generate_upscale_denoise(self, latents_path: str, prompt: str, negative_prompt: str, guidance_scale: float, seed: Optional[int] = None) -> Tuple[str, str]:
|
| 417 |
+
"""
|
| 418 |
+
Aplica upscale, AdaIN e Denoise em latentes de baixa resolução usando um processo de chunking.
|
| 419 |
+
"""
|
| 420 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 421 |
+
#seed_everything(used_seed)
|
| 422 |
+
|
| 423 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_up_")
|
| 424 |
+
self._register_tmp_dir(temp_dir)
|
| 425 |
+
|
| 426 |
+
try:
|
| 427 |
+
latents_low = torch.load(latents_path).to(self.device)
|
| 428 |
+
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
|
| 429 |
+
upsampled_latents = self._upsample_and_filter_latents(latents_low)
|
| 430 |
+
del latents_low; torch.cuda.empty_cache()
|
| 431 |
+
|
| 432 |
+
chunks = self._split_latents_with_overlap(upsampled_latents)
|
| 433 |
+
refined_chunks = []
|
| 434 |
+
|
| 435 |
+
for chunk in chunks:
|
| 436 |
+
if chunk.shape[2] <= 1: continue # Pula chunks inválidos
|
| 437 |
+
|
| 438 |
+
second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor
|
| 439 |
+
second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor
|
| 440 |
+
|
| 441 |
+
second_pass_kwargs = {
|
| 442 |
+
"prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height,
|
| 443 |
+
"width": second_pass_width, "num_frames": chunk.shape[2], "latents": chunk,
|
| 444 |
+
"guidance_scale": float(guidance_scale), "output_type": "latent",
|
| 445 |
+
"generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 446 |
+
**(self.config.get("second_pass", {}))
|
| 447 |
+
}
|
| 448 |
+
refined_chunk = self.pipeline(**second_pass_kwargs).images
|
| 449 |
+
refined_chunks.append(refined_chunk)
|
| 450 |
+
|
| 451 |
+
log_tensor_info(refined_chunk, "refined_chunk" )
|
| 452 |
+
|
| 453 |
+
final_latents = self._merge_chunks_with_overlap(refined_chunks)
|
| 454 |
+
|
| 455 |
+
if LTXV_DEBUG:
|
| 456 |
+
log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais")
|
| 457 |
+
|
| 458 |
+
latents_path = self._save_latents_to_disk(final_latents, "latents_refined", used_seed)
|
| 459 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 460 |
+
video_path = self._save_video_from_tensor(pixel_tensor, "refined_video", used_seed, temp_dir)
|
| 461 |
+
|
| 462 |
+
return video_path, latents_path
|
| 463 |
+
|
| 464 |
except Exception as e:
|
| 465 |
+
print(f"[ERROR] Falha no processo de upscale e denoise: {e}")
|
| 466 |
+
traceback.print_exc()
|
| 467 |
+
raise
|
| 468 |
+
finally:
|
| 469 |
+
self._finalize()
|
| 470 |
+
|
| 471 |
+
def generate_low_resolution(
|
| 472 |
+
self,
|
| 473 |
+
prompt: str,
|
| 474 |
+
negative_prompt: str,
|
| 475 |
+
height: int,
|
| 476 |
+
width: int,
|
| 477 |
+
duration_secs: float,
|
| 478 |
+
guidance_scale: float,
|
| 479 |
+
seed: Optional[int] = None,
|
| 480 |
+
conditioning_items: Optional[List[PatchedConditioningItem]] = None
|
| 481 |
+
) -> Tuple[str, str, int]:
|
| 482 |
+
"""
|
| 483 |
+
ETAPA 1: Gera um vídeo e latentes em resolução base a partir de um prompt e
|
| 484 |
+
condicionamentos opcionais.
|
| 485 |
+
"""
|
| 486 |
+
print("[INFO] Iniciando ETAPA 1: Geração de Baixa Resolução...")
|
| 487 |
+
|
| 488 |
+
# --- Configuração de Seed e Diretórios ---
|
| 489 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 490 |
+
#seed_everything(used_seed)
|
| 491 |
+
print(f" - Usando Seed: {used_seed}")
|
| 492 |
+
|
| 493 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_")
|
| 494 |
+
self._register_tmp_dir(temp_dir)
|
| 495 |
+
results_dir = "/app/output"
|
| 496 |
+
os.makedirs(results_dir, exist_ok=True)
|
| 497 |
+
|
| 498 |
+
# --- Cálculo de Dimensões e Frames ---
|
| 499 |
+
actual_num_frames = int(round(duration_secs * DEFAULT_FPS))
|
| 500 |
+
downscaled_height = height
|
| 501 |
+
downscaled_width = width
|
| 502 |
+
#self._calculate_downscaled_dims(height, width)
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
print(f" - Frames: {actual_num_frames}, Duração: {duration_secs}s")
|
| 506 |
+
print(f" - Dimensões de Saída: {downscaled_height}x{downscaled_width}")
|
| 507 |
+
|
| 508 |
+
# --- Execução da Pipeline ---
|
| 509 |
+
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
|
| 510 |
+
|
| 511 |
+
first_pass_kwargs = {
|
| 512 |
+
"prompt": prompt,
|
| 513 |
+
"negative_prompt": negative_prompt,
|
| 514 |
+
"height": downscaled_height,
|
| 515 |
+
"width": downscaled_width,
|
| 516 |
+
"num_frames": (actual_num_frames//8)+1,
|
| 517 |
+
"frame_rate": int(DEFAULT_FPS),
|
| 518 |
+
"generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 519 |
+
"output_type": "latent",
|
| 520 |
+
"conditioning_items": conditioning_items,
|
| 521 |
+
"guidance_scale": float(guidance_scale),
|
| 522 |
+
**(self.config.get("first_pass", {}))
|
| 523 |
+
}
|
| 524 |
+
|
| 525 |
+
print(" - Enviando para a pipeline LTX...")
|
| 526 |
+
latents = self.pipeline(**first_pass_kwargs).images
|
| 527 |
+
print(f" - Latentes gerados com shape: {latents.shape}")
|
| 528 |
+
|
| 529 |
+
# Decodifica os latentes para pixels para criar o vídeo de preview
|
| 530 |
+
#pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 531 |
+
|
| 532 |
+
# Salva os artefatos de saída (vídeo e tensor de latentes)
|
| 533 |
+
#video_path = self._save_video_from_tensor(pixel_tensor, "low_res_video", used_seed, temp_dir)
|
| 534 |
+
tensor_path = self._save_latents_to_disk(latents, "latents_low_res", used_seed)
|
| 535 |
+
|
| 536 |
+
self._finalize()
|
| 537 |
+
|
| 538 |
+
final_video_path, final_latents_path = self.refine_texture_only(
|
| 539 |
+
latents_path=tensor_path,
|
| 540 |
+
prompt=prompt,
|
| 541 |
+
negative_prompt=negative_prompt,
|
| 542 |
+
guidance_scale=guidance_scale,
|
| 543 |
+
seed=used_seed,
|
| 544 |
+
conditioning_items=conditioning_items,
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
# --- Limpeza ---
|
| 548 |
+
self._finalize()
|
| 549 |
+
|
| 550 |
+
print("[SUCCESS] ETAPA 1 Concluída.")
|
| 551 |
+
return final_video_path, final_latents_path, used_seed
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
def refine_texture_only(
|
| 555 |
+
self,
|
| 556 |
+
latents_path: str,
|
| 557 |
+
prompt: str,
|
| 558 |
+
negative_prompt: str,
|
| 559 |
+
guidance_scale: float,
|
| 560 |
+
seed: Optional[int] = None,
|
| 561 |
+
conditioning_items: Optional[List[PatchedConditioningItem]] = None
|
| 562 |
+
) -> Tuple[str, str]:
|
| 563 |
+
"""
|
| 564 |
+
ETAPA 2: Refina a textura dos latentes existentes SEM alterar sua resolução
|
| 565 |
+
e SEM dividi-los em pedaços. O tensor inteiro é processado de uma só vez para
|
| 566 |
+
garantir máxima consistência temporal.
|
| 567 |
+
"""
|
| 568 |
+
print("[INFO] Iniciando ETAPA 2: Refinamento de Textura...")
|
| 569 |
+
|
| 570 |
+
# --- Configuração de Seed e Diretórios ---
|
| 571 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 572 |
+
#seed_everything(used_seed)
|
| 573 |
+
print(f" - Usando Seed (consistente com Etapa 1): {used_seed}")
|
| 574 |
+
|
| 575 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_refine_single_")
|
| 576 |
+
self._register_tmp_dir(temp_dir)
|
| 577 |
+
|
| 578 |
+
# --- Carregamento dos Latentes ---
|
| 579 |
+
latents_to_refine = torch.load(latents_path).to(self.device)
|
| 580 |
+
print(f" - Shape dos latentes de entrada: {latents_to_refine.shape}")
|
| 581 |
+
|
| 582 |
+
if conditioning_items:
|
| 583 |
+
print(f" - Usando {len(conditioning_items)} item(ns) de condicionamento para o refinamento.")
|
| 584 |
+
|
| 585 |
+
# --- Execução da Pipeline ---
|
| 586 |
+
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
|
| 587 |
+
|
| 588 |
+
# As dimensões são as mesmas do tensor de entrada
|
| 589 |
+
refine_height = latents_to_refine.shape[3] * self.pipeline.vae_scale_factor
|
| 590 |
+
refine_width = latents_to_refine.shape[4] * self.pipeline.vae_scale_factor
|
| 591 |
+
|
| 592 |
+
second_pass_kwargs = {
|
| 593 |
+
"prompt": prompt,
|
| 594 |
+
"negative_prompt": negative_prompt,
|
| 595 |
+
"height": refine_height,
|
| 596 |
+
"width": refine_width,
|
| 597 |
+
"frame_rate": int(DEFAULT_FPS),
|
| 598 |
+
"num_frames": latents_to_refine.shape[2],
|
| 599 |
+
"latents": latents_to_refine, # O tensor completo é passado aqui
|
| 600 |
+
"guidance_scale": float(guidance_scale),
|
| 601 |
+
"output_type": "latent",
|
| 602 |
+
"generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 603 |
+
"conditioning_items": conditioning_items,
|
| 604 |
+
**(self.config.get("second_pass", {}))
|
| 605 |
+
}
|
| 606 |
+
|
| 607 |
+
print(" - Enviando tensor completo para a pipeline de refinamento...")
|
| 608 |
+
final_latents = self.pipeline(**second_pass_kwargs).images
|
| 609 |
+
print(f" - Latentes refinados com shape: {final_latents.shape}")
|
| 610 |
+
|
| 611 |
+
# Decodifica os latentes refinados para pixels
|
| 612 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 613 |
+
|
| 614 |
+
# Salva os artefatos de saída
|
| 615 |
+
video_path_out = self._save_video_from_tensor(pixel_tensor, "refined_video_single_pass", used_seed, temp_dir)
|
| 616 |
+
latents_path_out = self._save_latents_to_disk(final_latents, "latents_refined_single_pass", used_seed)
|
| 617 |
+
|
| 618 |
+
# --- Limpeza ---
|
| 619 |
+
# Libera os tensores da memória da GPU antes de finalizar.
|
| 620 |
+
del latents_to_refine
|
| 621 |
+
if 'final_latents' in locals():
|
| 622 |
+
del final_latents
|
| 623 |
+
if 'pixel_tensor' in locals():
|
| 624 |
+
del pixel_tensor
|
| 625 |
+
self._finalize()
|
| 626 |
+
|
| 627 |
+
print("[SUCCESS] ETAPA 2 Concluída.")
|
| 628 |
+
return video_path_out, latents_path_out
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
def encode_latents_to_mp4(self, latents_path: str, fps: int = int(DEFAULT_FPS)) -> str:
|
| 632 |
+
"""Decodifica um tensor de latentes salvo e o salva como um vídeo MP4."""
|
| 633 |
+
latents = torch.load(latents_path)
|
| 634 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_")
|
| 635 |
+
self._register_tmp_dir(temp_dir)
|
| 636 |
+
seed = random.randint(0, 99999) # Seed apenas para nome do arquivo
|
| 637 |
+
|
| 638 |
try:
|
| 639 |
+
chunks = self._split_latents_with_overlap(latents)
|
| 640 |
+
pixel_chunks = []
|
| 641 |
+
|
| 642 |
+
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
|
| 643 |
+
for chunk in chunks:
|
| 644 |
+
if chunk.shape[2] == 0: continue
|
| 645 |
+
pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 646 |
+
pixel_chunks.append(pixel_chunk)
|
| 647 |
+
|
| 648 |
+
final_pixel_tensor = self._merge_chunks_with_overlap(pixel_chunks)
|
| 649 |
+
final_video_path = self._save_video_from_tensor(final_pixel_tensor, f"final_video_{seed}", seed, temp_dir, fps=fps)
|
| 650 |
+
return final_video_path
|
| 651 |
+
|
| 652 |
except Exception as e:
|
| 653 |
+
print(f"[ERROR] Falha ao encodar latentes para MP4: {e}")
|
| 654 |
+
traceback.print_exc()
|
| 655 |
+
raise
|
| 656 |
+
finally:
|
| 657 |
+
self._finalize()
|
| 658 |
|
| 659 |
+
# --------------------------------------------------------------------------
|
| 660 |
+
# --- Métodos Internos e Auxiliares ---
|
| 661 |
+
# --------------------------------------------------------------------------
|
| 662 |
+
|
| 663 |
+
def _finalize(self):
|
| 664 |
+
"""Limpa a memória da GPU e os diretórios temporários."""
|
| 665 |
+
if LTXV_DEBUG:
|
| 666 |
+
print("[DEBUG] Finalize: iniciando limpeza...")
|
| 667 |
+
|
| 668 |
+
gc.collect()
|
| 669 |
+
if torch.cuda.is_available():
|
| 670 |
+
torch.cuda.empty_cache()
|
| 671 |
+
torch.cuda.ipc_collect()
|
| 672 |
+
|
| 673 |
+
# Limpa todos os diretórios temporários registrados
|
| 674 |
+
for d in list(self._tmp_dirs):
|
| 675 |
+
shutil.rmtree(d, ignore_errors=True)
|
| 676 |
+
self._tmp_dirs.remove(d)
|
| 677 |
+
if LTXV_DEBUG:
|
| 678 |
+
print(f"[DEBUG] Diretório temporário removido: {d}")
|
| 679 |
+
|
| 680 |
+
def _load_config(self, config_filename: str) -> Dict:
|
| 681 |
+
"""Carrega o arquivo de configuração YAML."""
|
| 682 |
+
config_path = LTX_VIDEO_REPO_DIR / "configs" / config_filename
|
| 683 |
+
print(f"[INFO] Carregando configuração de: {config_path}")
|
| 684 |
+
with open(config_path, "r") as file:
|
| 685 |
+
return yaml.safe_load(file)
|
| 686 |
+
|
| 687 |
+
def _load_models_from_hub(self):
|
| 688 |
+
"""Baixa e cria as instâncias da pipeline e do upsampler."""
|
| 689 |
t0 = time.perf_counter()
|
| 690 |
LTX_REPO = "Lightricks/LTX-Video"
|
| 691 |
+
|
| 692 |
+
print("[INFO] Baixando checkpoint principal...")
|
| 693 |
+
self.config["checkpoint_path"] = hf_hub_download(
|
| 694 |
+
repo_id=LTX_REPO, filename=self.config["checkpoint_path"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
token=os.getenv("HF_TOKEN")
|
| 696 |
)
|
| 697 |
+
print(f"[INFO] Checkpoint principal em: {self.config['checkpoint_path']}")
|
|
|
|
| 698 |
|
| 699 |
+
print("[INFO] Construindo pipeline...")
|
| 700 |
pipeline = create_ltx_video_pipeline(
|
| 701 |
ckpt_path=self.config["checkpoint_path"],
|
| 702 |
precision=self.config["precision"],
|
| 703 |
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 704 |
sampler=self.config["sampler"],
|
| 705 |
+
device="cpu", # Carrega em CPU primeiro
|
| 706 |
+
enhance_prompt=False
|
|
|
|
|
|
|
| 707 |
)
|
| 708 |
+
print("[INFO] Pipeline construída.")
|
| 709 |
|
| 710 |
latent_upsampler = None
|
| 711 |
if self.config.get("spatial_upscaler_model_path"):
|
| 712 |
+
print("[INFO] Baixando upscaler espacial...")
|
| 713 |
+
self.config["spatial_upscaler_model_path"] = hf_hub_download(
|
| 714 |
+
repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"],
|
| 715 |
+
token=os.getenv("HF_TOKEN")
|
| 716 |
+
)
|
| 717 |
+
print(f"[INFO] Upscaler em: {self.config['spatial_upscaler_model_path']}")
|
| 718 |
+
|
| 719 |
+
print("[INFO] Construindo latent_upsampler...")
|
| 720 |
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 721 |
+
print("[INFO] Latent upsampler construído.")
|
| 722 |
+
|
| 723 |
+
print(f"[INFO] Carregamento de modelos concluído em {time.perf_counter()-t0:.2f}s")
|
| 724 |
return pipeline, latent_upsampler
|
| 725 |
+
|
| 726 |
+
def _move_models_to_device(self):
|
| 727 |
+
"""Move os modelos carregados para o dispositivo de computação (GPU/CPU)."""
|
| 728 |
+
print(f"[INFO] Movendo modelos para o dispositivo: {self.device}")
|
| 729 |
+
self.pipeline.to(self.device)
|
| 730 |
+
if self.latent_upsampler:
|
| 731 |
+
self.latent_upsampler.to(self.device)
|
| 732 |
|
| 733 |
+
def _get_precision_dtype(self) -> torch.dtype:
|
| 734 |
+
"""Determina o dtype para autocast com base na configuração de precisão."""
|
| 735 |
prec = str(self.config.get("precision", "")).lower()
|
|
|
|
| 736 |
if prec in ["float8_e4m3fn", "bfloat16"]:
|
| 737 |
+
return torch.bfloat16
|
| 738 |
elif prec == "mixed_precision":
|
| 739 |
+
return torch.float16
|
| 740 |
+
return torch.float32
|
|
|
|
|
|
|
|
|
|
| 741 |
|
| 742 |
@torch.no_grad()
|
| 743 |
+
def _upsample_and_filter_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
| 744 |
+
"""Aplica o upsample espacial e o filtro AdaIN aos latentes."""
|
| 745 |
+
if not self.latent_upsampler:
|
| 746 |
+
raise ValueError("Latent Upsampler não está carregado para a operação de upscale.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 747 |
|
| 748 |
+
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 749 |
+
upsampled_latents_unnormalized = self.latent_upsampler(latents_unnormalized)
|
| 750 |
+
upsampled_latents_normalized = normalize_latents(upsampled_latents_unnormalized, self.pipeline.vae, vae_per_channel_normalize=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 751 |
|
| 752 |
+
# Filtro AdaIN para manter consistência de cor/estilo com o vídeo de baixa resolução
|
| 753 |
+
return adain_filter_latent(latents=upsampled_latents_normalized, reference_latents=latents)
|
| 754 |
+
|
| 755 |
def _prepare_conditioning_tensor_from_path(self, filepath: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
|
| 756 |
"""Carrega uma imagem, redimensiona, aplica padding e move para o dispositivo."""
|
| 757 |
+
tensor = self._load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 758 |
tensor = F.pad(tensor, padding)
|
| 759 |
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
|
|
|
| 760 |
|
| 761 |
+
def _calculate_downscaled_dims(self, height: int, width: int) -> Tuple[int, int]:
|
| 762 |
+
"""Calcula as dimensões para o primeiro passo (baixa resolução)."""
|
|
|
|
|
|
|
|
|
|
| 763 |
height_padded = ((height - 1) // 8 + 1) * 8
|
| 764 |
width_padded = ((width - 1) // 8 + 1) * 8
|
| 765 |
+
|
|
|
|
| 766 |
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 767 |
vae_scale_factor = self.pipeline.vae_scale_factor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 768 |
|
| 769 |
+
target_w = int(width_padded * downscale_factor)
|
| 770 |
+
downscaled_width = target_w - (target_w % vae_scale_factor)
|
| 771 |
+
|
| 772 |
+
target_h = int(height_padded * downscale_factor)
|
| 773 |
+
downscaled_height = target_h - (target_h % vae_scale_factor)
|
| 774 |
+
|
| 775 |
+
return downscaled_height, downscaled_width
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 776 |
|
| 777 |
+
def _split_latents_with_overlap(self, latents: torch.Tensor, overlap: int = 1) -> List[torch.Tensor]:
|
| 778 |
+
"""Divide um tensor de latentes em dois chunks com sobreposição."""
|
| 779 |
+
total_frames = latents.shape[2]
|
| 780 |
+
if total_frames <= overlap:
|
| 781 |
+
return [latents]
|
| 782 |
|
| 783 |
+
mid_point = max(overlap, total_frames // 2)
|
| 784 |
+
chunk1 = latents[:, :, :mid_point, :, :]
|
| 785 |
+
# O segundo chunk começa 'overlap' frames antes para criar a sobreposição
|
| 786 |
+
chunk2 = latents[:, :, mid_point - overlap:, :, :]
|
| 787 |
+
|
| 788 |
+
return [c for c in [chunk1, chunk2] if c.shape[2] > 0]
|
| 789 |
|
| 790 |
+
def _merge_chunks_with_overlap(self, chunks: List[torch.Tensor], overlap: int = 1) -> torch.Tensor:
|
| 791 |
+
"""Junta uma lista de chunks, removendo a sobreposição."""
|
| 792 |
+
if not chunks:
|
| 793 |
+
return torch.empty(0)
|
| 794 |
+
if len(chunks) == 1:
|
| 795 |
+
return chunks[0]
|
| 796 |
+
|
| 797 |
+
# Pega o primeiro chunk sem o frame de sobreposição final
|
| 798 |
+
merged_list = [chunks[0][:, :, :-overlap, :, :]]
|
| 799 |
+
# Adiciona os chunks restantes
|
| 800 |
+
merged_list.extend(chunks[1:])
|
| 801 |
|
| 802 |
+
return torch.cat(merged_list, dim=2)
|
| 803 |
+
|
| 804 |
+
def _save_latents_to_disk(self, latents_tensor: torch.Tensor, base_filename: str, seed: int) -> str:
|
| 805 |
+
"""Salva um tensor de latentes em um arquivo .pt."""
|
| 806 |
+
latents_cpu = latents_tensor.detach().to("cpu")
|
| 807 |
+
tensor_path = RESULTS_DIR / f"{base_filename}_{seed}.pt"
|
| 808 |
+
torch.save(latents_cpu, tensor_path)
|
| 809 |
+
if LTXV_DEBUG:
|
| 810 |
+
print(f"[DEBUG] Latentes salvos em: {tensor_path}")
|
| 811 |
+
return str(tensor_path)
|
| 812 |
+
|
| 813 |
+
def _save_video_from_tensor(self, pixel_tensor: torch.Tensor, base_filename: str, seed: int, temp_dir: str, fps: int = int(DEFAULT_FPS)) -> str:
|
| 814 |
+
"""Salva um tensor de pixels como um arquivo de vídeo MP4."""
|
| 815 |
+
temp_path = os.path.join(temp_dir, f"{base_filename}_{seed}.mp4")
|
| 816 |
+
video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=fps)
|
| 817 |
|
| 818 |
+
final_path = RESULTS_DIR / f"{base_filename}_{seed}.mp4"
|
| 819 |
+
shutil.move(temp_path, final_path)
|
| 820 |
+
print(f"[INFO] Vídeo final salvo em: {final_path}")
|
| 821 |
+
return str(final_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 822 |
|
| 823 |
+
|
| 824 |
+
def _seed_everething(self, seed: int):
|
| 825 |
+
random.seed(seed)
|
| 826 |
+
np.random.seed(seed)
|
| 827 |
+
torch.manual_seed(seed)
|
| 828 |
+
if torch.cuda.is_available():
|
| 829 |
+
torch.cuda.manual_seed(seed)
|
| 830 |
+
if torch.backends.mps.is_available():
|
| 831 |
+
torch.mps.manual_seed(seed)
|
| 832 |
|
| 833 |
+
|
| 834 |
+
def _register_tmp_dir(self, dir_path: str):
|
| 835 |
+
"""Registra um diretório temporário para limpeza posterior."""
|
| 836 |
+
if dir_path and os.path.isdir(dir_path):
|
| 837 |
+
self._tmp_dirs.add(dir_path)
|
| 838 |
+
if LTXV_DEBUG:
|
| 839 |
+
print(f"[DEBUG] Diretório temporário registrado: {dir_path}")
|
| 840 |
+
|
| 841 |
+
# ==============================================================================
|
| 842 |
+
# 4. INSTANCIAÇÃO E PONTO DE ENTRADA (Exemplo)
|
| 843 |
+
# ==============================================================================
|
| 844 |
|
|
|
|
| 845 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 846 |
video_generation_service = VideoService()
|
| 847 |
print("Instância do VideoService pronta para uso.")
|