rzanoli's picture
Make caption clearer
3a2b0e3
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from functools import lru_cache
import logging
import os
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, \
LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \
WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import requests
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# EVALITA results
BASELINES = {
"TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
"LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99
}
# GPT-4o results
REFERENCES = {
"NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04
}
TASK_METADATA_MULTIPLECHOICE = {
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
"SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
"AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
"WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
}
TASK_METADATA_GENERATIVE = {
"LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
"SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
"REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
}
# Function to send a Slack notification for a new model submission for evaluation
def send_slack_notification(model_name, user_name, user_affiliation):
# Insert your Slack webhook URL here
webhook_url = os.getenv("WEBHOOK_URL")
# Create the messag to be sent to Slack
message = {
"text": f"New model submission for EVALITA-LLM leaderboard:\n\n"
f"**Model Name**: {model_name}\n"
f"**User**: {user_name}\n"
f"**Affiliation**: {user_affiliation}\n"
f"Check out the model on HuggingFace: https://huggingface.co/{model_name}"
}
# Send the message to Slack
response = requests.post(webhook_url, json=message)
# Check if the request was successful and return the appropriate message
if response.status_code == 200:
return "✅ **Notification sent successfully!**"
else:
return f"❌ **Failed to send notification**: {response.text}"
# Funcion to validate the model submission and send the request for processing
def validate_and_submit_request(model_name, user_email, user_affiliation):
# Check if model name is provided and not empt
if not model_name or not model_name.strip():
return "❌ **Error:** Model name is required."
# Check if user email is provided and not empty
if not user_email or not user_email.strip():
return "❌ **Error:** Email address is required."
# Validate email format using regex
email_regex = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
if not re.match(email_regex, user_email.strip()):
return "❌ **Error:** Invalid email format. Please enter a valid email address."
# Check if user affiliation is provided and not empty
if not user_affiliation or not user_affiliation.strip():
return "❌ **Error:** Affiliation is required."
# Check if model name follows the correct format (organization/model-name)
if "/" not in model_name:
return "❌ **Error:** Model name must be in format 'organization/model-name' (e.g., 'microsoft/DialoGPT-medium')."
# Check if the model name contains only valid characters
if not re.match(r'^[a-zA-Z0-9._/-]+$', model_name):
return "❌ **Error:** Model name contains invalid characters."
slack_response = send_slack_notification(model_name.strip(), user_email.strip(), user_affiliation.strip())
# Return the Slack response (success or failure message)
return slack_response
# Funzione per calcolare la sensibilità del prompt (PSI)
def calculate_prompt_sensitivity(dataframe, tasks, prompt_ids):
# Elenco dei task generativi
generative_tasks = ["LS", "SU", "NER", "REL"]
cv_per_task = [] # Lista per memorizzare il CV per ogni task
for task in tasks:
prompt_col = f"{task} Best Prompt Id"
task_accuracies = [] # Lista per memorizzare le accuratezze dei prompt per un task
for pid in prompt_ids:
pid_int = int(pid)
# Applicazione dei filtri sui prompt per ogni task
if pid_int <= 6 and task in generative_tasks: # Prompt 1-6 solo per task non generativi
continue # Ignoriamo i prompt 1-6 per i task generativi
elif pid_int in [7, 8] and task != "SU": # Prompt 7-8 solo per il task SU
continue # Ignoriamo i prompt 7-8 per task diversi da SU
elif pid_int in [9, 10] and task not in ["LS", "NER", "REL"]: # Prompt 9-10 solo per LS, NER, REL
continue # Ignoriamo i prompt 9-10 per task che non sono LS, NER, o REL
# Calcolo della percentuale di modelli che hanno ottenuto il miglior prompt per il task
total = len(dataframe[prompt_col].dropna())
count = (dataframe[prompt_col] == pid).sum()
accuracy = (count / total * 100) if total > 0 else 0
task_accuracies.append(accuracy)
# Calcoliamo la media e la deviazione standard delle accuratezze per il task
if task_accuracies:
mean_acc = np.mean(task_accuracies)
std_acc = np.std(task_accuracies)
# Calcoliamo il Coefficiente di Variazione (CV) solo se la media è maggiore di 0
if mean_acc > 0:
cv = std_acc / mean_acc
cv_per_task.append(cv)
else:
cv_per_task.append(0)
else:
cv_per_task.append(0) # Se non ci sono dati per il task, CV è 0
# Calcola la media dei CV
mean_cv = np.mean(cv_per_task) if cv_per_task else 0
# Normalizza il CV per ottenere il PSI
if mean_cv >= 0.5:
psi = 1.0
else:
psi = mean_cv / 0.5
return psi, mean_cv, cv_per_task
def map_prompt_ids_for_generation(dataframe):
"""
Map original prompt IDs (1 or 2) to their corresponding generative prompt IDs.
- For task 'SU': 1 -> 7, 2 -> 8
- For tasks 'NER', 'REL', 'LS': 1 -> 9, 2 -> 10
"""
# Mapping for SU task
task = "SU"
best_prompt_col = f"{task} Best Prompt Id"
if best_prompt_col in dataframe.columns:
dataframe[best_prompt_col] = dataframe[best_prompt_col].apply(
lambda x: 7 if x == 1 else 8
)
# Mapping for other tasks
for task in ["NER", "REL", "LS"]:
best_prompt_col = f"{task} Best Prompt Id"
if best_prompt_col in dataframe.columns:
dataframe[best_prompt_col] = dataframe[best_prompt_col].apply(
lambda x: 9 if x == 1 else 10
)
return dataframe
def create_best_model_comparison_table(dataframe):
"""
Tabella interattiva con dettagli dei modelli migliori per ogni task.
"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
table_data = {
'Task': [],
'Best Overall Model': [],
'CPS': [],
'Best Prompt Model': [],
'Acc.': []
}
'''
for task in tasks:
if task in dataframe.columns:
max_idx = dataframe[task].idxmax()
model_raw = dataframe.loc[max_idx, 'Model']
if isinstance(model_raw, str) and '<' in model_raw:
match = re.search(r'>([^<]+)<', model_raw)
model_name = match.group(1) if match else model_raw
else:
model_name = str(model_raw)
# Estraiamo il valore di "Best Prompt" per il task specifico
best_prompt_column = f"{task} Best Prompt"
best_prompt_value = dataframe.loc[max_idx, best_prompt_column]
print(best_prompt_value)
table_data['Task'].append(task)
table_data['Model'].append(model_name)
table_data['Comb. Perf.'].append(f"{dataframe.loc[max_idx, task]:.2f}")
table_data['Best Prompt'].append(f"{best_prompt_value:.2f}") # Aggiungiamo il valore del Best Prompt
table_data['Params (B)'].append(f"{dataframe.loc[max_idx, '#Params (B)']:.1f}")
'''
for task in tasks:
if task in dataframe.columns:
# Trova l'indice del modello che ha il miglior punteggio sulla combinazione di prompt
max_idx = dataframe[task].idxmax()
model_raw = dataframe.loc[max_idx, 'Model']
# Estrae il nome del modello se è formattato con simboli '<>'
if isinstance(model_raw, str) and '<' in model_raw:
match = re.search(r'>([^<]+)<', model_raw)
model_name = match.group(1) if match else model_raw
else:
model_name = str(model_raw)
# Estrai il valore di "Comb. Perf." (la performance media)
comb_perf_value = dataframe.loc[max_idx, task]
# Estrai il valore del miglior prompt per il task
best_prompt_column = f"{task} Best Prompt"
best_prompt_value = dataframe.loc[max_idx, best_prompt_column]
# Trova il modello che ha avuto il miglior punteggio con il miglior prompt
best_prompt_idx = dataframe[best_prompt_column].idxmax()
best_prompt_model_raw = dataframe.loc[best_prompt_idx, 'Model']
if isinstance(best_prompt_model_raw, str) and '<' in best_prompt_model_raw:
match = re.search(r'>([^<]+)<', best_prompt_model_raw)
best_prompt_model = match.group(1) if match else best_prompt_model_raw
else:
best_prompt_model = str(best_prompt_model_raw)
# Estrai l'accuratezza del modello con il miglior prompt
best_prompt_accuracy = dataframe.loc[best_prompt_idx, best_prompt_column]
# Aggiungi i dati alla tabella
table_data['Task'].append(task)
table_data['Best Overall Model'].append(model_name)
table_data['CPS'].append(f"{comb_perf_value:.2f}")
table_data['Best Prompt Model'].append(best_prompt_model)
table_data['Acc.'].append(f"{best_prompt_accuracy:.2f}")
fig = go.Figure(data=[go.Table(
columnwidth=[40, 200, 40, 200, 40], # larghezze proporzionali
header=dict(
values=[f'<b>{col}</b>' for col in table_data.keys()],
fill_color=['#2171b5', '#2171b5', '#2171b5', '#4292c6', '#4292c6'],
#fill_color='#005f87',
font=dict(color='white', size=12, family='Arial'),
align='center',
height=30
),
cells=dict(
values=list(table_data.values()),
fill_color=[['#f0f0f0' if i % 2 == 0 else 'white' for i in range(len(table_data['Task']))]],
font=dict(color='#2c3e50', size=11, family='Arial'),
align=['center', 'left', 'center', 'left', 'center'],
height=30
)
)])
fig.update_layout(
title={'text': "Top Model per Task: CPS & Best Prompt",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
font=dict(family="Arial", size=11), # allinea font
height=500,
margin=dict(l=20, r=20, t=60, b=100)
)
# Caption
fig.add_annotation(
text="Best Overall Models: Scored using the primary metric, CPS, across all prompts. <br>"
"Best Prompt Model: Scored with the highest accuracy (unofficial) based on its best-performing prompt. <br>"
"No single model achieves the highest performance across all tasks.",
xref="paper", yref="paper",
x=0.5, y=-0.20,
showarrow=False,
font=dict(size=11, color="gray", family="Arial"),
align="center",
xanchor="center"
)
return fig
def create_prompt_heatmap(dataframe):
"""
Heatmap con percentuale di modelli che hanno ottenuto le best performance con ciascun prompt per ogni task,
mostrando solo i valori pertinenti:
- Prompt 1-6: solo per task multiple-choice
- Prompt 7-8: solo per SU
- Prompt 9-10: solo per LS, NER, REL
"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
generative_tasks = ["LS", "SU", "NER", "REL"]
mc_tasks = [t for t in tasks if t not in generative_tasks]
all_prompt_ids = set()
for task in tasks:
prompt_col = f"{task} Best Prompt Id"
if prompt_col in dataframe.columns:
all_prompt_ids.update(dataframe[prompt_col].dropna().unique())
prompt_ids = sorted(all_prompt_ids, key=int)
matrix = []
hover_texts = []
# Calcola la sensibilità al prompt (PSI, mean_cv, cv_per_task)
psi, mean_cv, cv_per_task = calculate_prompt_sensitivity(dataframe, tasks, prompt_ids)
print(f"Prompt Sensitivity Index (PSI): {psi:.3f}")
print(f"Mean CV: {mean_cv:.3f}")
print(f"CV per task: {cv_per_task}")
for pid in prompt_ids:
row = []
hover_row = []
for task in tasks:
prompt_col = f"{task} Best Prompt Id"
pid_int = int(pid)
# Filtri personalizzati
if pid_int <= 6 and task in generative_tasks:
row.append(None)
hover_row.append("")
elif pid_int in [7, 8] and task != "SU":
row.append(None)
hover_row.append("")
elif pid_int in [9, 10] and task not in ["LS", "NER", "REL"]:
row.append(None)
hover_row.append("")
elif prompt_col in dataframe.columns:
total = len(dataframe[prompt_col].dropna())
count = (dataframe[prompt_col] == pid).sum()
percentage = (count / total * 100) if total > 0 else 0
row.append(percentage)
hover_row.append(
f"<b>Prompt {pid} - {task}</b><br>"
f"Models: {count}/{total}<br>"
f"Percentage: {percentage:.1f}%"
)
else:
row.append(0)
hover_row.append(f"<b>Prompt {pid} - {task}</b><br>No data")
matrix.append(row)
hover_texts.append(hover_row)
# Ticktext colorati: blu per 1-6, arancio per 7-10
ticktext = []
for pid in prompt_ids:
pid_int = int(pid)
#if pid_int <= 6:
ticktext.append(f'<span style="color:#1f77b4;">P{pid} </span>') # blu
#else:
#ticktext.append(f'<span style="color:#ff7f0e;">P{pid}</span>') # arancio
fig = go.Figure(data=go.Heatmap(
z=matrix,
x=tasks,
y=prompt_ids,
colorscale=[
[0, '#f7fbff'],
[0.2, '#deebf7'],
[0.4, '#9ecae1'],
[0.6, '#4292c6'],
[0.8, '#2171b5'],
[1, '#08519c']
],
text=[[f"{val:.0f}%" if val is not None else "" for val in row] for row in matrix],
texttemplate="%{text}",
textfont={"size": 11, "family": "Arial"},
hovertemplate='%{customdata}<extra></extra>',
customdata=hover_texts,
colorbar=dict(title="% Models", ticksuffix="%"),
zmin=0,
zmax=100
))
fig.update_yaxes(
tickmode='array',
tickvals=prompt_ids,
ticktext=ticktext,
tickfont={"size": 11, "family": "Arial"}
)
fig.update_layout(
title={'text': "Most Effective Prompts per Task Across Models",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
xaxis_title="Task",
yaxis_title="Prompt Variant",
font=dict(family="Arial", size=11), # allinea font con line_chart
margin=dict(b=150),
template="plotly_white",
dragmode=False,
height=500
)
fig.add_annotation(
text=f"<b style='font-size:14px; color:#2c3e50;'>Mean CV: {mean_cv:.2f}</b>",
# Testo in grassetto e con colore personalizzato
xref="paper", yref="paper",
x=0.3, y=0.85, # Posizione sotto il grafico
showarrow=False,
font=dict(size=14, color="#2c3e50", family="Verdana"), # Cambiato font a 'Verdana' per un aspetto più elegante
align="center",
xanchor="center",
bgcolor="#f7f7f7", # Aggiunta di uno sfondo chiaro per migliorare la leggibilità
borderpad=5, # Padding per distanziare il testo dal bordo
bordercolor="#ccc", # Colore del bordo
borderwidth=1 # Larghezza del bordo
)
fig.add_annotation(
text=(
"Prompts 1–6 are for multiple-choice tasks, 7–10 for generative tasks. Darker cells represent the number of times, across <br>"
"all model configurations tested, that a prompt achieved the top performance. With a Mean CV (Coefficient of Variation averaged across tasks) <br>"
"above 0.3 there is high variability between prompts, suggesting the use of multiple prompts for more stable evaluation."
),
xref="paper", yref="paper",
x=0.5, y=-0.35,
showarrow=False,
font=dict(size=11, color="gray", family="Arial"),
align="center",
xanchor="center"
)
fig.update_xaxes(fixedrange=True)
fig.update_yaxes(fixedrange=True)
return fig
def highlight_best_per_task(df):
"""Add 🟡 symbol next to the maximum value in each task column"""
task_columns = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
df = df.copy()
for col in task_columns:
if col in df.columns:
max_val = df[col].max()
df[col] = df[col].apply(
lambda x: f"{x:.1f}🔺" if x == max_val else f"{x:.1f}"
)
return df
def theoretical_performance(df_hash):
"""
Theoretical performance of a model that scores the highest on every individual task
"""
# This is a placeholder - you'd need to pass the actual dataframe
# In practice, you'd compute this once and store it
#fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
return 75.0 # Placeholder value
def scale_sizes(values, min_size=8, max_size=30):
"""Normalize sizes for scatter plot markers """
if not values:
return []
vmin, vmax = min(values), max(values)
if vmax == vmin:
return [(min_size + max_size) / 2] * len(values)
return [
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size)
for val in values
]
def extract_model_name(model_string):
"""Extract model name from HTML string."""
match = re.search(r'>([^<]+)<', model_string)
return match.group(1) if match else model_string
def create_line_chart(dataframe):
"""Create left chart."""
def scale_sizes(values, min_size=8, max_size=30):
vmin, vmax = min(values), max(values)
return [
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin
else (min_size + max_size) / 2
for val in values
]
fig = go.Figure()
# Loop su 5-Shot e 0-Shot
for shot, color in [(True, "blue"), (False, "red")]:
df = dataframe[dataframe["IS_FS"] == shot]
x = df["#Params (B)"].tolist()
y = df["Avg. Comb. Perf. ⬆️"].tolist()
labels = [
re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m)
for m in df["Model"].tolist()
]
fig.add_trace(go.Scatter(
x=x,
y=y,
mode="markers",
name="5-Shot" if shot else "0-Shot",
marker=dict(color=color, size=scale_sizes(x)),
hovertemplate="<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>",
customdata=labels,
))
# Show the best model
all_y = dataframe["Avg. Comb. Perf. ⬆️"].tolist()
if all_y:
max_idx = all_y.index(max(all_y))
max_x = dataframe["#Params (B)"].iloc[max_idx]
max_y = all_y[max_idx]
max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1)
fig.add_annotation(
x=max_x,
y=max_y,
text=max_label,
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor="black",
font=dict(size=11, color="black"),
xshift=10, yshift=10,
ax=-30, ay=-20,
xanchor="right"
)
# Layout
fig.update_layout(
title="Model Accuracy vs #Params",
xaxis_title="#Params (B)", yaxis_title="Avgerage CPS",
template="plotly_white", hovermode="closest",
font=dict(family="Arial", size=10), dragmode=False,
xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]),
yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100])
)
# Caption
fig.add_annotation(
text="Accuracy generally rises with #Params, but smaller models <br>"
"with 5-shot can outperform larger zero-shot models.",
xref="paper", yref="paper", x=0.5, y=-0.3,
showarrow=False, font=dict(size=11, color="gray"),
align="center", xanchor="center"
)
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
fig.update_yaxes(fixedrange=True)
return fig
def create_boxplot_task(dataframe=None, baselines=None, references=None):
"""Create right chart"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
# Dati di default se non forniti
if dataframe is None:
np.random.seed(42)
dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks})
if baselines is None:
baselines = {task: np.random.randint(50, 70) for task in tasks}
if references is None:
references = {}
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
fig = go.Figure()
for i, task in enumerate(tasks):
if task not in dataframe.columns:
continue
y_data = dataframe[task].dropna().tolist()
# Boxplot
fig.add_trace(go.Box(
y=y_data,
name=task,
marker=dict(color=colors[i]),
line=dict(color="black", width=2),
fillcolor=colors[i],
opacity=0.7,
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
hoverlabel=dict(bgcolor=colors[i], font_color="white"),
width=0.6,
whiskerwidth=0.2,
quartilemethod="linear"
))
# Linea baseline
baseline_value = baselines.get(task)
if baseline_value is not None:
fig.add_shape(
type="line",
x0=i - 0.3, x1=i + 0.3,
y0=baseline_value, y1=baseline_value,
line=dict(color="black", width=2, dash="dot"),
xref="x", yref="y"
)
# Linea reference GPT-4o
reference_value = references.get(task)
if reference_value is not None:
fig.add_shape(
type="line",
x0=i - 0.3, x1=i + 0.3,
y0=reference_value, y1=reference_value,
line=dict(color="red", width=2, dash="dashdot"),
xref="x", yref="y"
)
# Layout
fig.update_layout(
title="Distribution of Model Accuracy by Task",
xaxis_title="Task",
yaxis_title="Average CPS",
template="plotly_white",
boxmode="group",
dragmode=False,
font=dict(family="Arial", size=10),
margin=dict(b=80),
)
# Caption
fig.add_annotation(
text=(
"In tasks like TE and SA, models approach the accuracy of supervised models at EVALITA (dashed black line).<br>"
"In NER and REL they remain lower. Dashed red lines show GPT-4o reference results for generative tasks."
),
xref="paper", yref="paper",
x=0.5, y=-0.30,
showarrow=False,
font=dict(size=11, color="gray"),
align="center"
)
fig.update_yaxes(range=[0, 100], fixedrange=True)
fig.update_xaxes(fixedrange=True)
return fig
def create_medal_assignments(sorted_df):
"""Function for medal assignment logic"""
medals = {
'large_fs': False, 'medium_fs': False, 'small_fs': False,
'large_0shot': False, 'medium_0shot': False, 'small_0shot': False
}
new_model_column = []
for _, row in sorted_df.iterrows():
model_name = row['Model']
size = row["Size"]
is_fs = row['IS_FS']
if is_fs: # 5-Few-Shot
if size == "🔵🔵🔵" and not medals['large_fs']:
model_name = f"{model_name} 🔵🔵🔵🏆"
medals['large_fs'] = True
elif size == "🔵🔵" and not medals['medium_fs']:
model_name = f"{model_name} 🔵🔵🏆"
medals['medium_fs'] = True
elif size == "🔵" and not medals['small_fs']:
model_name = f"{model_name} 🔵🏆"
medals['small_fs'] = True
else: # 0-Shot
if size == "🔵🔵🔵" and not medals['large_0shot']:
model_name = f"{model_name} 🔵🔵🔵🎖️"
medals['large_0shot'] = True
elif size == "🔵🔵" and not medals['medium_0shot']:
model_name = f"{model_name} 🔵🔵🎖️"
medals['medium_0shot'] = True
elif size == "🔵" and not medals['small_0shot']:
model_name = f"{model_name} 🔵🎖️"
medals['small_0shot'] = True
new_model_column.append(model_name)
return new_model_column
def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns):
"""Base leaderboard creation with common parameters. """
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list],
search_columns=[AutoEvalColumn.model.name],
hide_columns=hidden_columns,
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False,
)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""Leaderboard initialization """
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# Sort and reset index
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Apply medal assignments
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
# Show the best values for tasks
#sorted_dataframe = highlight_best_per_task(sorted_dataframe)
field_list = fields(AutoEvalColumn)
return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns)
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
""" Task-specific leaderboard update."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# Sort and reset index
sorted_dataframe = dataframe.sort_values(by="Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Apply medal assignments
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list] + [int],
search_columns=[AutoEvalColumn.model.name],
hide_columns=hidden_columns,
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False
)
def download_snapshot(repo, local_dir, max_retries=3):
"""Snapshot download with retry logic."""
for attempt in range(max_retries):
try:
logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})")
snapshot_download(
repo_id=repo,
local_dir=local_dir,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
return True
except Exception as e:
logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
logger.error(f"Failed to download {repo} after {max_retries} attempts")
return False
return False
def restart_space():
"""Restart the Hugging Face space."""
try:
logger.info("Restarting space... ")
API.restart_space(repo_id=REPO_ID)
except Exception as e:
logger.error(f"Error restarting space: {e}")
def create_title_html():
"""Function for title HTML."""
return """
<div class="title-header">
<h1 class="title-text">
EVALITA-LLM Leaderboard
</h1>
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" class="title-link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
</svg>
Open Italian LLM Leaderboard
</a>
</div>
"""
def create_credits_markdown():
"""Credits section."""
return """
**This project has benefited from the following support:**
- 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
- 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
- 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
"""
# Main initialization
def initialize_app():
"""Initialize the application ."""
try:
# Download snapshots
queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
if not (queue_success and results_success):
logger.error("Failed to download required data")
return None, None, None, None, None
# Load leaderboard data
leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
EVAL_REQUESTS_PATH, EVAL_COLS)
# Calculate theoretical max performance
theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))
return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max
except Exception as e:
logger.error(f"Error initializing app: {e}")
return None, None, None, None, None
# Initialize data
LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app()
LEADERBOARD_DF = map_prompt_ids_for_generation(LEADERBOARD_DF)
if LEADERBOARD_DF is None:
# Fallback behavior
logger.error("Failed to initialize app data")
theoretical_max_combined_perf = 0.0
# Main Gradio interface
def create_gradio_interface():
"""The main Gradio interface."""
demo = gr.Blocks(css=custom_css)
with demo:
# Titolo
gr.HTML(create_title_html())
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# Tabs principali
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# 🏅 Benchmark
with gr.TabItem("🏅 Benchmark"):
if LEADERBOARD_DF is not None:
# Labels dei campi affiancate
with gr.Row():
gr.HTML(f"""
<div class="performance-metrics">
<div class="metric-label" title="Total number of configurations (zero-shot and 5-few-shot) of the models evaluated in the leaderboard." style="color: #333333;">
Models tested: {len(LEADERBOARD_DF)}
</div>
<div class="metric-label" title="Average accuracy of the evaluated models." style="color: #333333;">
Avg combined perf.: {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].mean():.2f}
</div>
<div class="metric-label" title="Standard deviation of the evaluated models' performance." style="color: #333333;">
Std. Dev. {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].std():.2f}
</div>
<div class="metric-label" title="Best evaluated model." style="color: #333333;">
Best model: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Model']}
</div>
<div class="metric-label" title="Accuracy of the best evaluated model." style="color: #333333;">
Best model accuracy: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Avg. Comb. Perf. ⬆️']:.2f}
</div>
<div class="metric-label" title="Maximum achievable accuracy based on the highest performance for each task by any model in the leaderboard." style="color: #333333;">
Ideal model: {theoretical_max_combined_perf:.2f}
</div>
</div>
""")
# Grafici affiancati
with gr.Row():
gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="line-chart")
with gr.Row():
gr.Plot(value=create_prompt_heatmap(LEADERBOARD_DF), elem_id="line-chart")
gr.Plot(value=create_best_model_comparison_table(LEADERBOARD_DF), elem_id="line-chart")
# Leaderboard
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️",
"TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️",
"TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
)
# 📝 About
with gr.TabItem("📝 About"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# 🚀 Submit a new model to evaluate
with gr.TabItem("🚀 Submit"):
gr.Markdown("# 📝 Model Evaluation Request", elem_classes="markdown-text")
gr.Markdown("""
**Fill out the form below to request evaluation of your model on EVALITA-LLM.**
Once submitted, our team will automatically receive a notification. We will evaluate the
submission’s relevance for both research and commercial purposes, as well as assess its feasibility.
""", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
# HuggingFace model name field
model_name_input = gr.Textbox(
label="HuggingFace Model Name",
placeholder="e.g., microsoft/DialoGPT-medium",
info="Enter the complete model name as it appears on HuggingFace Hub (organization/model-name)",
elem_id="model-name-input"
)
# User email field
user_name_input = gr.Textbox(
label="Your email address",
placeholder="e.g., mario.rossi@example.com",
info="Enter your email address for communication",
elem_id="user-email-input"
)
# Affiliation field
user_affiliation_input = gr.Textbox(
label="Affiliation",
placeholder="e.g., University of Milan, Google Research, Freelancer",
info="Enter your affiliation (university, company, organization)",
elem_id="user-affiliation-input"
)
# Submit button
submit_request_button = gr.Button(
"📤 Submit Request",
variant="primary",
elem_id="submit-request-button"
)
# Result area
submission_status = gr.Markdown(elem_id="submission-status")
# Connect button to function
submit_request_button.click(
validate_and_submit_request,
inputs=[model_name_input, user_name_input, user_affiliation_input],
outputs=submission_status
)
# Additional information
with gr.Accordion("ℹ️ Additional Information", open=False):
gr.Markdown("""
**What happens after submission:**
1. Your request is automatically sent to the EVALITA-LLM team
2. We verify that the model is accessible on HuggingFace
3. We contact you to confirm inclusion in the evaluation
4. The model is added to the evaluation queue
**Model requirements:**
- Model must be publicly accessible on HuggingFace Hub
- Must be compatible with the EleutherAI/lm-evaluation-harness framework
- Must have a license that allows evaluation
**Evaluation tasks:**
Your model will be evaluated on all tasks: TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL.
""", elem_classes="markdown-text")
# Separators
with gr.TabItem("║", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific tabs (Multiple Choice)
if LEADERBOARD_DF is not None:
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard_task = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Comb. Perf. ⬆️"
}),
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
# Separators
with gr.TabItem("│", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific tabs (Generative)
if LEADERBOARD_DF is not None:
for task, metadata in TASK_METADATA_GENERATIVE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard_task = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Comb. Perf. ⬆️"
}),
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
# Citation e Credits
with gr.Accordion("📙 Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True
)
with gr.Accordion("📙 Credits", open=False):
gr.Markdown(create_credits_markdown())
return demo
# Create and configure the demo
demo = create_gradio_interface()
# Background scheduler for space restart
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
# Launch configuration
if __name__ == "__main__":
demo.queue(default_concurrency_limit=40).launch(
debug=True,
show_error=True
)