fabrioop commited on
Commit
076f083
·
verified ·
1 Parent(s): 26bf28c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -83
app.py CHANGED
@@ -1,89 +1,29 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
 
 
 
4
 
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
 
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
- )
62
-
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
-
68
-
69
- if __name__ == "__main__":
70
- demo.launch()
71
- def chat(prompt, max_length=200):
72
- # Convertimos el prompt en tensores para el modelo
73
- inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
74
-
75
- # Generamos la respuesta del modelo
76
- outputs = model.generate(
77
- inputs,
78
- max_length=max_length,
79
  pad_token_id=tokenizer.eos_token_id,
80
- do_sample=True,
81
- top_p=0.9,
82
- temperature=0.7
83
  )
84
-
85
- # ⚡ Aquí ponemos el código para quitar la columna de tokens
86
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
87
-
88
- # Devolvemos solo la respuesta en texto plano
89
- return response[len(prompt):].strip()
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
+ modelo = "tu_usuario/mi-ia-chatbot" # tu modelo subido
5
+ tokenizer = AutoTokenizer.from_pretrained(modelo)
6
+ model = AutoModelForCausalLM.from_pretrained(modelo)
7
 
8
+ def responder(mensaje, historial):
9
+ if historial is None:
10
+ historial = []
 
 
 
 
 
 
 
 
 
 
11
 
12
+ entradas = tokenizer.encode(mensaje + tokenizer.eos_token, return_tensors="pt")
13
+ salida = model.generate(
14
+ entradas,
15
+ max_length=150,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  pad_token_id=tokenizer.eos_token_id,
17
+ temperature=0.7,
18
+ top_p=0.9
 
19
  )
20
+ respuesta = tokenizer.decode(salida[:, entradas.shape[-1]:][0], skip_special_tokens=True)
21
+ historial.append((mensaje, respuesta))
22
+ return historial, historial
23
+
24
+ demo = gr.Blocks()
25
+ with demo:
26
+ chat = gr.Chatbot()
27
+ entrada = gr.Textbox()
28
+ entrada.submit(responder, [entrada, chat], [chat, chat])
29
+ demo.launch()