Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,91 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
|
| 4 |
-
# Modelos de texto e imagen
|
| 5 |
-
chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct", device_map="auto")
|
| 6 |
-
image_gen = pipeline("text-to-image", model="stabilityai/stable-diffusion-2")
|
| 7 |
|
| 8 |
-
def
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
with gr.Blocks() as demo:
|
| 18 |
-
gr.
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
with gr.Tab("🎨 Imagen"):
|
| 26 |
-
prompt = gr.Textbox(label="Escribe lo que quieres ver")
|
| 27 |
-
salida = gr.Image()
|
| 28 |
-
prompt.submit(generar_imagen, inputs=prompt, outputs=salida)
|
| 29 |
|
| 30 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import InferenceClient
|
| 3 |
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
def respond(
|
| 6 |
+
message,
|
| 7 |
+
history: list[dict[str, str]],
|
| 8 |
+
system_message,
|
| 9 |
+
max_tokens,
|
| 10 |
+
temperature,
|
| 11 |
+
top_p,
|
| 12 |
+
hf_token: gr.OAuthToken,
|
| 13 |
+
):
|
| 14 |
+
"""
|
| 15 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 16 |
+
"""
|
| 17 |
+
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 18 |
|
| 19 |
+
messages = [{"role": "system", "content": system_message}]
|
| 20 |
+
|
| 21 |
+
messages.extend(history)
|
| 22 |
+
|
| 23 |
+
messages.append({"role": "user", "content": message})
|
| 24 |
+
|
| 25 |
+
response = ""
|
| 26 |
+
|
| 27 |
+
for message in client.chat_completion(
|
| 28 |
+
messages,
|
| 29 |
+
max_tokens=max_tokens,
|
| 30 |
+
stream=True,
|
| 31 |
+
temperature=temperature,
|
| 32 |
+
top_p=top_p,
|
| 33 |
+
):
|
| 34 |
+
choices = message.choices
|
| 35 |
+
token = ""
|
| 36 |
+
if len(choices) and choices[0].delta.content:
|
| 37 |
+
token = choices[0].delta.content
|
| 38 |
+
|
| 39 |
+
response += token
|
| 40 |
+
yield response
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
"""
|
| 44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
+
"""
|
| 46 |
+
chatbot = gr.ChatInterface(
|
| 47 |
+
respond,
|
| 48 |
+
type="messages",
|
| 49 |
+
additional_inputs=[
|
| 50 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 51 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 52 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 53 |
+
gr.Slider(
|
| 54 |
+
minimum=0.1,
|
| 55 |
+
maximum=1.0,
|
| 56 |
+
value=0.95,
|
| 57 |
+
step=0.05,
|
| 58 |
+
label="Top-p (nucleus sampling)",
|
| 59 |
+
),
|
| 60 |
+
],
|
| 61 |
+
)
|
| 62 |
|
| 63 |
with gr.Blocks() as demo:
|
| 64 |
+
with gr.Sidebar():
|
| 65 |
+
gr.LoginButton()
|
| 66 |
+
chatbot.render()
|
| 67 |
+
|
| 68 |
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
+
demo.launch()
|
| 71 |
+
def chat(prompt, max_length=200):
|
| 72 |
+
# Convertimos el prompt en tensores para el modelo
|
| 73 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 74 |
+
|
| 75 |
+
# Generamos la respuesta del modelo
|
| 76 |
+
outputs = model.generate(
|
| 77 |
+
inputs,
|
| 78 |
+
max_length=max_length,
|
| 79 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 80 |
+
do_sample=True,
|
| 81 |
+
top_p=0.9,
|
| 82 |
+
temperature=0.7
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# ⚡ Aquí ponemos el código para quitar la columna de tokens
|
| 86 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 87 |
+
|
| 88 |
+
# Devolvemos solo la respuesta en texto plano
|
| 89 |
+
return response[len(prompt):].strip()
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
|
|