File size: 2,128 Bytes
91c6bea
 
ba900f0
 
 
91c6bea
 
ba900f0
 
 
 
 
40ca01e
ba900f0
 
 
 
 
 
40ca01e
 
 
 
 
 
 
ba900f0
40ca01e
ba900f0
40ca01e
ba900f0
 
 
 
 
 
40ca01e
ba900f0
 
 
 
 
91c6bea
 
40ca01e
 
 
986437f
91c6bea
 
 
986437f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import FlashrankRerank

from langchain.tools.retriever import create_retriever_tool


class RetrieverManager:
    def __init__(self, vector_store):
        self.vector_store = vector_store
        
    def create_base_retriever(self, search_type: str ="similarity", k: int = 3):
        """Create basic vector store retriever"""
        return self.vector_store.as_retriever(
            search_type=search_type, 
            search_kwargs={"k": k}
        )
    
    def create_ensemble_retriever(
            self, 
            texts, 
            k: int = 3, 
            vector_weight: float = 0.5, 
            keyword_weight: float =0.5
        ):
        """Create ensemble retriever combining vector and keyword search"""
        vector_retriever = self.create_base_retriever(k=k)
        keyword_retriever = BM25Retriever.from_documents(texts)
        keyword_retriever.k = k
        
        return EnsembleRetriever(
            retrievers=[vector_retriever, keyword_retriever],
            weights=[vector_weight, keyword_weight]
        )
    
    def create_compression_retriever(self, base_retriever, top_n: int):
        """Create compression retriever with reranking"""
        compressor = FlashrankRerank(top_n=top_n)
        return ContextualCompressionRetriever(
            base_compressor=compressor,
            base_retriever=base_retriever
        )

    def create_retriever(self, documents, top_n: int, k: int = 3, ):
        base_retriever = self.create_ensemble_retriever(texts=documents, k=k)
        compression_retriever = self.create_compression_retriever(base_retriever=base_retriever, top_n=top_n)
        retriever_tool = create_retriever_tool(
            compression_retriever,
            "retrieve_docs",
            "use tools for search through the user's provided documents and return relevant information about user query.",
        )
        return retriever_tool