fahmiaziz98
init
986437f
from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import FlashrankRerank
from langchain.tools.retriever import create_retriever_tool
class RetrieverManager:
def __init__(self, vector_store):
self.vector_store = vector_store
def create_base_retriever(self, search_type: str ="similarity", k: int = 3):
"""Create basic vector store retriever"""
return self.vector_store.as_retriever(
search_type=search_type,
search_kwargs={"k": k}
)
def create_ensemble_retriever(
self,
texts,
k: int = 3,
vector_weight: float = 0.5,
keyword_weight: float =0.5
):
"""Create ensemble retriever combining vector and keyword search"""
vector_retriever = self.create_base_retriever(k=k)
keyword_retriever = BM25Retriever.from_documents(texts)
keyword_retriever.k = k
return EnsembleRetriever(
retrievers=[vector_retriever, keyword_retriever],
weights=[vector_weight, keyword_weight]
)
def create_compression_retriever(self, base_retriever, top_n: int):
"""Create compression retriever with reranking"""
compressor = FlashrankRerank(top_n=top_n)
return ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=base_retriever
)
def create_retriever(self, documents, top_n: int, k: int = 3, ):
base_retriever = self.create_ensemble_retriever(texts=documents, k=k)
compression_retriever = self.create_compression_retriever(base_retriever=base_retriever, top_n=top_n)
retriever_tool = create_retriever_tool(
compression_retriever,
"retrieve_docs",
"use tools for search through the user's provided documents and return relevant information about user query.",
)
return retriever_tool