Spaces:
Runtime error
Runtime error
| title: LLaMA-Factory | |
| app_file: src/webui.py | |
| sdk: gradio | |
| sdk_version: 5.25.0 | |
|  | |
| [](https://github.com/hiyouga/LLaMA-Factory/stargazers) | |
| [](https://github.com/hiyouga/LLaMA-Factory/commits/main) | |
| [](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors) | |
| [](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml) | |
| [](https://pypi.org/project/llamafactory/) | |
| [](https://scholar.google.com/scholar?cites=12620864006390196564) | |
| [](https://github.com/hiyouga/LLaMA-Factory/pulls) | |
| [](https://twitter.com/llamafactory_ai) | |
| [](https://discord.gg/rKfvV9r9FK) | |
| [](https://gitcode.com/zhengyaowei/LLaMA-Factory) | |
| [](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing) | |
| [](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | |
| [](https://huggingface.co/spaces/hiyouga/LLaMA-Board) | |
| [](https://modelscope.cn/studios/hiyouga/LLaMA-Board) | |
| [](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/) | |
| <div align="center" markdown="1"> | |
| ### Supporters ❤️ | |
| <a href="https://warp.dev/llama-factory"> | |
| <img alt="Warp sponsorship" width="400" src="https://github.com/user-attachments/assets/ab8dd143-b0fd-4904-bdc5-dd7ecac94eae"> | |
| </a> | |
| #### [Warp, the agentic terminal for developers](https://warp.dev/llama-factory) | |
| [Available for MacOS, Linux, & Windows](https://warp.dev/llama-factory) | |
| </div> | |
| ---- | |
| <h3 align="center"> | |
| Easily fine-tune 100+ large language models with zero-code <a href="#quickstart">CLI</a> and <a href="#fine-tuning-with-llama-board-gui-powered-by-gradio">Web UI</a> | |
| </h3> | |
| <p align="center"> | |
| <picture> | |
| <img alt="Github trend" src="https://trendshift.io/api/badge/repositories/4535"> | |
| </picture> | |
| </p> | |
| 👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg). | |
| \[ English | [中文](README_zh.md) \] | |
| **Fine-tuning a large language model can be easy as...** | |
| https://github.com/user-attachments/assets/3991a3a8-4276-4d30-9cab-4cb0c4b9b99e | |
| Choose your path: | |
| - **Documentation**: https://llamafactory.readthedocs.io/en/latest/ | |
| - **Colab (free)**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing | |
| - **Local machine**: Please refer to [usage](#getting-started) | |
| - **PAI-DSW (free trial)**: [Llama3 Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) | [DeepSeek-R1-Distill Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b) | |
| - **Amazon SageMaker**: [Blog](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/) | |
| - **Easy Dataset**: [Fine-tune on Synthetic Data](https://buaa-act.feishu.cn/wiki/GVzlwYcRFiR8OLkHbL6cQpYin7g) | |
| > [!NOTE] | |
| > Except for the above links, all other websites are unauthorized third-party websites. Please carefully use them. | |
| ## Table of Contents | |
| - [Features](#features) | |
| - [Benchmark](#benchmark) | |
| - [Changelog](#changelog) | |
| - [Supported Models](#supported-models) | |
| - [Supported Training Approaches](#supported-training-approaches) | |
| - [Provided Datasets](#provided-datasets) | |
| - [Requirement](#requirement) | |
| - [Getting Started](#getting-started) | |
| - [Installation](#installation) | |
| - [Data Preparation](#data-preparation) | |
| - [Quickstart](#quickstart) | |
| - [Fine-Tuning with LLaMA Board GUI](#fine-tuning-with-llama-board-gui-powered-by-gradio) | |
| - [Build Docker](#build-docker) | |
| - [Deploy with OpenAI-style API and vLLM](#deploy-with-openai-style-api-and-vllm) | |
| - [Download from ModelScope Hub](#download-from-modelscope-hub) | |
| - [Download from Modelers Hub](#download-from-modelers-hub) | |
| - [Use W&B Logger](#use-wb-logger) | |
| - [Use SwanLab Logger](#use-swanlab-logger) | |
| - [Projects using LLaMA Factory](#projects-using-llama-factory) | |
| - [License](#license) | |
| - [Citation](#citation) | |
| - [Acknowledgement](#acknowledgement) | |
| ## Features | |
| - **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, DeepSeek, Yi, Gemma, ChatGLM, Phi, etc. | |
| - **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc. | |
| - **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ. | |
| - **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), [Muon](https://github.com/KellerJordan/Muon), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA. | |
| - **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA. | |
| - **Wide tasks**: Multi-turn dialogue, tool using, image understanding, visual grounding, video recognition, audio understanding, etc. | |
| - **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, [SwanLab](https://github.com/SwanHubX/SwanLab), etc. | |
| - **Faster inference**: OpenAI-style API, Gradio UI and CLI with [vLLM worker](https://github.com/vllm-project/vllm) or [SGLang worker](https://github.com/sgl-project/sglang). | |
| ### Day-N Support for Fine-Tuning Cutting-Edge Models | |
| | Support Date | Model Name | | |
| | ------------ | ------------------------------------------------------------ | | |
| | Day 0 | Qwen3 / Qwen2.5-VL / Gemma 3 / InternLM 3 / MiniCPM-o-2.6 | | |
| | Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 / Llama 4 | | |
| ## Benchmark | |
| Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA Factory's QLoRA further improves the efficiency regarding the GPU memory. | |
|  | |
| <details><summary>Definitions</summary> | |
| - **Training Speed**: the number of training samples processed per second during the training. (bs=4, cutoff_len=1024) | |
| - **Rouge Score**: Rouge-2 score on the development set of the [advertising text generation](https://aclanthology.org/D19-1321.pdf) task. (bs=4, cutoff_len=1024) | |
| - **GPU Memory**: Peak GPU memory usage in 4-bit quantized training. (bs=1, cutoff_len=1024) | |
| - We adopt `pre_seq_len=128` for ChatGLM's P-Tuning and `lora_rank=32` for LLaMA Factory's LoRA tuning. | |
| </details> | |
| ## Changelog | |
| [25/04/28] We supported fine-tuning the **[Qwen3](https://qwenlm.github.io/blog/qwen3/)** model family. | |
| [25/04/21] We supported the **[Muon](https://github.com/KellerJordan/Muon)** optimizer. See [examples](examples/README.md) for usage. Thank [@tianshijing](https://github.com/tianshijing)'s PR. | |
| [25/04/16] We supported fine-tuning the **[InternVL3](https://huggingface.co/OpenGVLab/InternVL3-8B)** model. See [PR #7258](https://github.com/hiyouga/LLaMA-Factory/pull/7258) to get started. | |
| [25/04/14] We supported fine-tuning the **[GLM-Z1](https://huggingface.co/THUDM/GLM-Z1-9B-0414)** and **[Kimi-VL](https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct)** models. | |
| [25/04/06] We supported fine-tuning the **[Llama 4](https://ai.meta.com/blog/llama-4-multimodal-intelligence/)** model. See [PR #7611](https://github.com/hiyouga/LLaMA-Factory/pull/7611) to get started. | |
| <details><summary>Full Changelog</summary> | |
| [25/03/31] We supported fine-tuning the **[Qwen2.5 Omni](https://qwenlm.github.io/blog/qwen2.5-omni/)** model. See [PR #7537](https://github.com/hiyouga/LLaMA-Factory/pull/7537) to get started. | |
| [25/03/15] We supported **[SGLang](https://github.com/sgl-project/sglang)** as inference backend. Try `infer_backend: sglang` to accelerate inference. | |
| [25/03/12] We supported fine-tuning the **[Gemma 3](https://huggingface.co/blog/gemma3)** model. | |
| [25/02/24] Announcing **[EasyR1](https://github.com/hiyouga/EasyR1)**, an efficient, scalable and multi-modality RL training framework for efficient GRPO training. | |
| [25/02/11] We supported saving the **[Ollama](https://github.com/ollama/ollama)** modelfile when exporting the model checkpoints. See [examples](examples/README.md) for usage. | |
| [25/02/05] We supported fine-tuning the **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** and **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** on audio understanding tasks. | |
| [25/01/31] We supported fine-tuning the **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** and **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** models. | |
| [25/01/15] We supported **[APOLLO](https://arxiv.org/abs/2412.05270)** optimizer. See [examples](examples/README.md) for usage. | |
| [25/01/14] We supported fine-tuning the **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** and **[MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6)** models. Thank [@BUAADreamer](https://github.com/BUAADreamer)'s PR. | |
| [25/01/14] We supported fine-tuning the **[InternLM 3](https://huggingface.co/collections/internlm/)** models. Thank [@hhaAndroid](https://github.com/hhaAndroid)'s PR. | |
| [25/01/10] We supported fine-tuning the **[Phi-4](https://huggingface.co/microsoft/phi-4)** model. | |
| [24/12/21] We supported using **[SwanLab](https://github.com/SwanHubX/SwanLab)** for experiment tracking and visualization. See [this section](#use-swanlab-logger) for details. | |
| [24/11/27] We supported fine-tuning the **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** model and the **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** dataset. | |
| [24/10/09] We supported downloading pre-trained models and datasets from the **[Modelers Hub](https://modelers.cn/models)**. See [this tutorial](#download-from-modelers-hub) for usage. | |
| [24/09/19] We supported fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models. | |
| [24/08/30] We supported fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR. | |
| [24/08/27] We supported **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `enable_liger_kernel: true` for efficient training. | |
| [24/08/09] We supported **[Adam-mini](https://github.com/zyushun/Adam-mini)** optimizer. See [examples](examples/README.md) for usage. Thank [@relic-yuexi](https://github.com/relic-yuexi)'s PR. | |
| [24/07/04] We supported [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR. | |
| [24/06/16] We supported **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage. | |
| [24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models. | |
| [24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage. | |
| [24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `paligemma` template for chat completion. | |
| [24/05/18] We supported **[KTO](https://arxiv.org/abs/2402.01306)** algorithm for preference learning. See [examples](examples/README.md) for usage. | |
| [24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details. | |
| [24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See [examples](examples/README.md) for usage. | |
| [24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details. | |
| [24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See [examples](examples/README.md) for usage. | |
| [24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)** optimizer. See [examples](examples/README.md) for usage. | |
| [24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison). | |
| [24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See [examples](examples/README.md) for usage. | |
| [24/03/21] Our paper "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" is available at arXiv! | |
| [24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See [examples](examples/README.md) for usage. | |
| [24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See [examples](examples/README.md) for usage. | |
| [24/03/07] We supported **[GaLore](https://arxiv.org/abs/2403.03507)** optimizer. See [examples](examples/README.md) for usage. | |
| [24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `infer_backend: vllm` to enjoy **270%** inference speed. | |
| [24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `use_dora: true` to activate DoRA training. | |
| [24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See [examples](examples/README.md) for usage. | |
| [24/02/05] Qwen1.5 (Qwen2 beta version) series models are supported in LLaMA-Factory. Check this [blog post](https://qwenlm.github.io/blog/qwen1.5/) for details. | |
| [24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `dataset: glaive_toolcall_en`. | |
| [23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `use_unsloth: true` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details. | |
| [23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement). | |
| [23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)**. See [this tutorial](#download-from-modelscope-hub) for usage. | |
| [23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune. | |
| [23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `shift_attn: true` argument to enable shift short attention. | |
| [23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [examples](examples/README.md) for usage. | |
| [23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `flash_attn: fa2` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs. | |
| [23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `rope_scaling: linear` argument in training and `rope_scaling: dynamic` argument at inference to extrapolate the position embeddings. | |
| [23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [examples](examples/README.md) for usage. | |
| [23/07/31] We supported **dataset streaming**. Try `streaming: true` and `max_steps: 10000` arguments to load your dataset in streaming mode. | |
| [23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details. | |
| [23/07/18] We developed an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development. | |
| [23/07/09] We released **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested. | |
| [23/06/29] We provided a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft) for details. | |
| [23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**. | |
| [23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage. | |
| </details> | |
| > [!NOTE] | |
| > If you cannot use the latest feature, please pull the latest code and install LLaMA-Factory again. | |
| ## Supported Models | |
| | Model | Model size | Template | | |
| | ----------------------------------------------------------------- | -------------------------------- | ------------------- | | |
| | [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 | | |
| | [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - | | |
| | [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 | | |
| | [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere | | |
| | [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek | | |
| | [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 | | |
| | [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseekr1 | | |
| | [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon | | |
| | [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma | | |
| | [Gemma 3](https://huggingface.co/google) | 1B/4B/12B/27B | gemma3/gemma (1B) | | |
| | [GLM-4/GLM-4-0414/GLM-Z1](https://huggingface.co/THUDM) | 9B/32B | glm4/glmz1 | | |
| | [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - | | |
| | [Granite 3.0-3.3](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 | | |
| | [Hunyuan](https://huggingface.co/tencent/) | 7B | hunyuan | | |
| | [Index](https://huggingface.co/IndexTeam) | 1.9B | index | | |
| | [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 | | |
| | [InternVL 2.5-3](https://huggingface.co/OpenGVLab)\* | 1B/2B/8B/14B/38B/78B | intern_vl | | |
| | [Kimi-VL](https://huggingface.co/moonshotai) | 16B | kimi_vl | | |
| | [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - | | |
| | [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 | | |
| | [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 | | |
| | [Llama 4](https://huggingface.co/meta-llama) | 109B/402B | llama4 | | |
| | [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama | | |
| | [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava | | |
| | [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next | | |
| | [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video | | |
| | [MiMo](https://huggingface.co/XiaomiMiMo) | 7B | mimo | | |
| | [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 | | |
| | [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v | | |
| | [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral | | |
| | [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral | | |
| | [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small | | |
| | [OLMo](https://huggingface.co/allenai) | 1B/7B | - | | |
| | [PaliGemma/PaliGemma2](https://huggingface.co/google) | 3B/10B/28B | paligemma | | |
| | [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - | | |
| | [Phi-3/Phi-3.5](https://huggingface.co/microsoft) | 4B/14B | phi | | |
| | [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small | | |
| | [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 | | |
| | [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral | | |
| | [Qwen (1-2.5) (Code/Math/MoE/QwQ)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen | | |
| | [Qwen3 (MoE)](https://huggingface.co/Qwen) | 0.6B/1.7B/4B/8B/14B/32B/235B | qwen3 | | |
| | [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio | | |
| | [Qwen2.5-Omni](https://huggingface.co/Qwen)\*\* | 3B/7B | qwen2_omni | | |
| | [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/32B/72B | qwen2_vl | | |
| | [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 | | |
| | [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - | | |
| | [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 | | |
| | [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse | | |
| | [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi | | |
| | [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl | | |
| | [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan | | |
| > [!NOTE] | |
| > For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models. | |
| > | |
| > Remember to use the **SAME** template in training and inference. | |
| > | |
| > \*: You should install the `transformers` from main branch and use `DISABLE_VERSION_CHECK=1` to skip version check. | |
| > | |
| > \*\*: You need to install a specific version of `transformers` to use the corresponding model. | |
| Please refer to [constants.py](src/llamafactory/extras/constants.py) for a full list of models we supported. | |
| You also can add a custom chat template to [template.py](src/llamafactory/data/template.py). | |
| ## Supported Training Approaches | |
| | Approach | Full-tuning | Freeze-tuning | LoRA | QLoRA | | |
| | ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ | | |
| | Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | |
| | Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | |
| | Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | |
| | PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | |
| | DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | |
| | KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | |
| | ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | |
| | SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | |
| > [!TIP] | |
| > The implementation details of PPO can be found in [this blog](https://newfacade.github.io/notes-on-reinforcement-learning/17-ppo-trl.html). | |
| ## Provided Datasets | |
| <details><summary>Pre-training datasets</summary> | |
| - [Wiki Demo (en)](data/wiki_demo.txt) | |
| - [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | |
| - [RedPajama V2 (en)](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2) | |
| - [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220) | |
| - [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered) | |
| - [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile) | |
| - [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B) | |
| - [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb) | |
| - [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) | |
| - [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack) | |
| - [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata) | |
| </details> | |
| <details><summary>Supervised fine-tuning datasets</summary> | |
| - [Identity (en&zh)](data/identity.json) | |
| - [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca) | |
| - [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3) | |
| - [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM) | |
| - [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2) | |
| - [LIMA (en)](https://huggingface.co/datasets/GAIR/lima) | |
| - [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset) | |
| - [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN) | |
| - [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN) | |
| - [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN) | |
| - [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M) | |
| - [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M) | |
| - [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) | |
| - [UltraChat (en)](https://github.com/thunlp/UltraChat) | |
| - [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) | |
| - [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) | |
| - [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT) | |
| - [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca) | |
| - [SlimOrca (en)](https://huggingface.co/datasets/Open-Orca/SlimOrca) | |
| - [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) | |
| - [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M) | |
| - [Wiki QA (en)](https://huggingface.co/datasets/wiki_qa) | |
| - [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa) | |
| - [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn) | |
| - [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar) | |
| - [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data) | |
| - [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen) | |
| - [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k) | |
| - [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4) | |
| - [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) | |
| - [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct) | |
| - [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) | |
| - [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k) | |
| - [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia) | |
| - [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction) | |
| - [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo) | |
| - [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2) | |
| - [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered) | |
| - [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1) | |
| - [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub) | |
| - [OpenO1-SFT (en&zh)](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT) | |
| - [Open-Thoughts (en)](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k) | |
| - [Open-R1-Math (en)](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) | |
| - [Chinese-DeepSeek-R1-Distill (zh)](https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT) | |
| - [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k) | |
| - [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions) | |
| - [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de) | |
| - [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de) | |
| - [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de) | |
| - [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de) | |
| - [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de) | |
| - [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de) | |
| - [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de) | |
| - [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de) | |
| - [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de) | |
| </details> | |
| <details><summary>Preference datasets</summary> | |
| - [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k) | |
| - [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | |
| - [COIG-P (en&zh)](https://huggingface.co/datasets/m-a-p/COIG-P) | |
| - [RLHF-V (en)](https://huggingface.co/datasets/openbmb/RLHF-V-Dataset) | |
| - [VLFeedback (en)](https://huggingface.co/datasets/Zhihui/VLFeedback) | |
| - [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs) | |
| - [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf) | |
| - [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar) | |
| - [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de) | |
| - [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k) | |
| </details> | |
| Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands. | |
| ```bash | |
| pip install --upgrade huggingface_hub | |
| huggingface-cli login | |
| ``` | |
| ## Requirement | |
| | Mandatory | Minimum | Recommend | | |
| | ------------ | ------- | --------- | | |
| | python | 3.9 | 3.10 | | |
| | torch | 2.0.0 | 2.6.0 | | |
| | transformers | 4.45.0 | 4.50.0 | | |
| | datasets | 2.16.0 | 3.2.0 | | |
| | accelerate | 0.34.0 | 1.2.1 | | |
| | peft | 0.14.0 | 0.15.1 | | |
| | trl | 0.8.6 | 0.9.6 | | |
| | Optional | Minimum | Recommend | | |
| | ------------ | ------- | --------- | | |
| | CUDA | 11.6 | 12.2 | | |
| | deepspeed | 0.10.0 | 0.16.4 | | |
| | bitsandbytes | 0.39.0 | 0.43.1 | | |
| | vllm | 0.4.3 | 0.8.2 | | |
| | flash-attn | 2.5.6 | 2.7.2 | | |
| ### Hardware Requirement | |
| \* *estimated* | |
| | Method | Bits | 7B | 14B | 30B | 70B | `x`B | | |
| | ------------------------------- | ---- | ----- | ----- | ----- | ------ | ------- | | |
| | Full (`bf16` or `fp16`) | 32 | 120GB | 240GB | 600GB | 1200GB | `18x`GB | | |
| | Full (`pure_bf16`) | 16 | 60GB | 120GB | 300GB | 600GB | `8x`GB | | |
| | Freeze/LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | `2x`GB | | |
| | QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | `x`GB | | |
| | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | `x/2`GB | | |
| | QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | `x/4`GB | | |
| ## Getting Started | |
| ### Installation | |
| > [!IMPORTANT] | |
| > Installation is mandatory. | |
| ```bash | |
| git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git | |
| cd LLaMA-Factory | |
| pip install -e ".[torch,metrics]" | |
| ``` | |
| Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, aqlm, vllm, sglang, galore, apollo, badam, adam-mini, qwen, minicpm_v, modelscope, openmind, swanlab, quality | |
| > [!TIP] | |
| > Use `pip install --no-deps -e .` to resolve package conflicts. | |
| <details><summary>Setting up a virtual environment with <b>uv</b></summary> | |
| Create an isolated Python environment with [uv](https://github.com/astral-sh/uv): | |
| ```bash | |
| uv sync --extra torch --extra metrics --prerelease=allow | |
| ``` | |
| Run LLaMA-Factory in the isolated environment: | |
| ```bash | |
| uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml | |
| ``` | |
| </details> | |
| <details><summary>For Windows users</summary> | |
| #### Install BitsAndBytes | |
| If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version. | |
| ```bash | |
| pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl | |
| ``` | |
| #### Install Flash Attention-2 | |
| To enable FlashAttention-2 on the Windows platform, please use the script from [flash-attention-windows-wheel](https://huggingface.co/lldacing/flash-attention-windows-wheel) to compile and install it by yourself. | |
| </details> | |
| <details><summary>For Ascend NPU users</summary> | |
| To install LLaMA Factory on Ascend NPU devices, please upgrade Python to version 3.10 or higher and specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands: | |
| ```bash | |
| # replace the url according to your CANN version and devices | |
| # install CANN Toolkit | |
| wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C20SPC702/Ascend-cann-toolkit_8.0.0.alpha002_linux-"$(uname -i)".run | |
| bash Ascend-cann-toolkit_8.0.0.alpha002_linux-"$(uname -i)".run --install | |
| # install CANN Kernels | |
| wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C20SPC702/Ascend-cann-kernels-910b_8.0.0.alpha002_linux-"$(uname -i)".run | |
| bash Ascend-cann-kernels-910b_8.0.0.alpha002_linux-"$(uname -i)".run --install | |
| # set env variables | |
| source /usr/local/Ascend/ascend-toolkit/set_env.sh | |
| ``` | |
| | Requirement | Minimum | Recommend | | |
| | ------------ | ------- | -------------- | | |
| | CANN | 8.0.RC1 | 8.0.0.alpha002 | | |
| | torch | 2.1.0 | 2.4.0 | | |
| | torch-npu | 2.1.0 | 2.4.0.post2 | | |
| | deepspeed | 0.13.2 | 0.13.2 | | |
| | vllm-ascend | - | 0.7.3 | | |
| Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use. | |
| If you cannot infer model on NPU devices, try setting `do_sample: false` in the configurations. | |
| Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html) | |
| #### Install BitsAndBytes | |
| To use QLoRA based on bitsandbytes on Ascend NPU, please follow these 3 steps: | |
| 1. Manually compile bitsandbytes: Refer to [the installation documentation](https://huggingface.co/docs/bitsandbytes/installation?backend=Ascend+NPU&platform=Ascend+NPU) for the NPU version of bitsandbytes to complete the compilation and installation. The compilation requires a cmake version of at least 3.22.1 and a g++ version of at least 12.x. | |
| ```bash | |
| # Install bitsandbytes from source | |
| # Clone bitsandbytes repo, Ascend NPU backend is currently enabled on multi-backend-refactor branch | |
| git clone -b multi-backend-refactor https://github.com/bitsandbytes-foundation/bitsandbytes.git | |
| cd bitsandbytes/ | |
| # Install dependencies | |
| pip install -r requirements-dev.txt | |
| # Install the dependencies for the compilation tools. Note that the commands for this step may vary depending on the operating system. The following are provided for reference | |
| apt-get install -y build-essential cmake | |
| # Compile & install | |
| cmake -DCOMPUTE_BACKEND=npu -S . | |
| make | |
| pip install . | |
| ``` | |
| 2. Install transformers from the main branch. | |
| ```bash | |
| git clone -b main https://github.com/huggingface/transformers.git | |
| cd transformers | |
| pip install . | |
| ``` | |
| 3. Set `double_quantization: false` in the configuration. You can refer to the [example](examples/train_qlora/llama3_lora_sft_bnb_npu.yaml). | |
| </details> | |
| ### Data Preparation | |
| Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can use datasets on HuggingFace / ModelScope / Modelers hub, load the dataset in local disk, or specify a path to s3/gcs cloud storage. | |
| > [!NOTE] | |
| > Please update `data/dataset_info.json` to use your custom dataset. | |
| You can also use **[Easy Dataset](https://github.com/ConardLi/easy-dataset)** to create synthetic data for fine-tuning. | |
| ### Quickstart | |
| Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively. | |
| ```bash | |
| llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml | |
| llamafactory-cli chat examples/inference/llama3_lora_sft.yaml | |
| llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml | |
| ``` | |
| See [examples/README.md](examples/README.md) for advanced usage (including distributed training). | |
| > [!TIP] | |
| > Use `llamafactory-cli help` to show help information. | |
| > | |
| > Read [FAQs](https://github.com/hiyouga/LLaMA-Factory/issues/4614) first if you encounter any problems. | |
| ### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio)) | |
| ```bash | |
| llamafactory-cli webui | |
| ``` | |
| ### Build Docker | |
| For CUDA users: | |
| ```bash | |
| cd docker/docker-cuda/ | |
| docker compose up -d | |
| docker compose exec llamafactory bash | |
| ``` | |
| For Ascend NPU users: | |
| ```bash | |
| cd docker/docker-npu/ | |
| docker compose up -d | |
| docker compose exec llamafactory bash | |
| ``` | |
| For AMD ROCm users: | |
| ```bash | |
| cd docker/docker-rocm/ | |
| docker compose up -d | |
| docker compose exec llamafactory bash | |
| ``` | |
| <details><summary>Build without Docker Compose</summary> | |
| For CUDA users: | |
| ```bash | |
| docker build -f ./docker/docker-cuda/Dockerfile \ | |
| --build-arg INSTALL_BNB=false \ | |
| --build-arg INSTALL_VLLM=false \ | |
| --build-arg INSTALL_DEEPSPEED=false \ | |
| --build-arg INSTALL_FLASHATTN=false \ | |
| --build-arg PIP_INDEX=https://pypi.org/simple \ | |
| -t llamafactory:latest . | |
| docker run -dit --gpus=all \ | |
| -v ./hf_cache:/root/.cache/huggingface \ | |
| -v ./ms_cache:/root/.cache/modelscope \ | |
| -v ./om_cache:/root/.cache/openmind \ | |
| -v ./data:/app/data \ | |
| -v ./output:/app/output \ | |
| -p 7860:7860 \ | |
| -p 8000:8000 \ | |
| --shm-size 16G \ | |
| --name llamafactory \ | |
| llamafactory:latest | |
| docker exec -it llamafactory bash | |
| ``` | |
| For Ascend NPU users: | |
| ```bash | |
| # Choose docker image upon your environment | |
| docker build -f ./docker/docker-npu/Dockerfile \ | |
| --build-arg INSTALL_DEEPSPEED=false \ | |
| --build-arg PIP_INDEX=https://pypi.org/simple \ | |
| -t llamafactory:latest . | |
| # Change `device` upon your resources | |
| docker run -dit \ | |
| -v ./hf_cache:/root/.cache/huggingface \ | |
| -v ./ms_cache:/root/.cache/modelscope \ | |
| -v ./om_cache:/root/.cache/openmind \ | |
| -v ./data:/app/data \ | |
| -v ./output:/app/output \ | |
| -v /usr/local/dcmi:/usr/local/dcmi \ | |
| -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ | |
| -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ | |
| -v /etc/ascend_install.info:/etc/ascend_install.info \ | |
| -p 7860:7860 \ | |
| -p 8000:8000 \ | |
| --device /dev/davinci0 \ | |
| --device /dev/davinci_manager \ | |
| --device /dev/devmm_svm \ | |
| --device /dev/hisi_hdc \ | |
| --shm-size 16G \ | |
| --name llamafactory \ | |
| llamafactory:latest | |
| docker exec -it llamafactory bash | |
| ``` | |
| For AMD ROCm users: | |
| ```bash | |
| docker build -f ./docker/docker-rocm/Dockerfile \ | |
| --build-arg INSTALL_BNB=false \ | |
| --build-arg INSTALL_VLLM=false \ | |
| --build-arg INSTALL_DEEPSPEED=false \ | |
| --build-arg INSTALL_FLASHATTN=false \ | |
| --build-arg PIP_INDEX=https://pypi.org/simple \ | |
| -t llamafactory:latest . | |
| docker run -dit \ | |
| -v ./hf_cache:/root/.cache/huggingface \ | |
| -v ./ms_cache:/root/.cache/modelscope \ | |
| -v ./om_cache:/root/.cache/openmind \ | |
| -v ./data:/app/data \ | |
| -v ./output:/app/output \ | |
| -v ./saves:/app/saves \ | |
| -p 7860:7860 \ | |
| -p 8000:8000 \ | |
| --device /dev/kfd \ | |
| --device /dev/dri \ | |
| --shm-size 16G \ | |
| --name llamafactory \ | |
| llamafactory:latest | |
| docker exec -it llamafactory bash | |
| ``` | |
| </details> | |
| <details><summary>Details about volume</summary> | |
| - `hf_cache`: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory. | |
| - `ms_cache`: Similar to Hugging Face cache but for ModelScope users. | |
| - `om_cache`: Similar to Hugging Face cache but for Modelers users. | |
| - `data`: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI. | |
| - `output`: Set export dir to this location so that the merged result can be accessed directly on the host machine. | |
| </details> | |
| ### Deploy with OpenAI-style API and vLLM | |
| ```bash | |
| API_PORT=8000 llamafactory-cli api examples/inference/llama3.yaml infer_backend=vllm vllm_enforce_eager=true | |
| ``` | |
| > [!TIP] | |
| > Visit [this page](https://platform.openai.com/docs/api-reference/chat/create) for API document. | |
| > | |
| > Examples: [Image understanding](scripts/api_example/test_image.py) | [Function calling](scripts/api_example/test_toolcall.py) | |
| ### Download from ModelScope Hub | |
| If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope. | |
| ```bash | |
| export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows | |
| ``` | |
| Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`. | |
| ### Download from Modelers Hub | |
| You can also use Modelers Hub to download models and datasets. | |
| ```bash | |
| export USE_OPENMIND_HUB=1 # `set USE_OPENMIND_HUB=1` for Windows | |
| ``` | |
| Train the model by specifying a model ID of the Modelers Hub as the `model_name_or_path`. You can find a full list of model IDs at [Modelers Hub](https://modelers.cn/models), e.g., `TeleAI/TeleChat-7B-pt`. | |
| ### Use W&B Logger | |
| To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files. | |
| ```yaml | |
| report_to: wandb | |
| run_name: test_run # optional | |
| ``` | |
| Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account. | |
| ### Use SwanLab Logger | |
| To use [SwanLab](https://github.com/SwanHubX/SwanLab) for logging experimental results, you need to add the following arguments to yaml files. | |
| ```yaml | |
| use_swanlab: true | |
| swanlab_run_name: test_run # optional | |
| ``` | |
| When launching training tasks, you can log in to SwanLab in three ways: | |
| 1. Add `swanlab_api_key=<your_api_key>` to the yaml file, and set it to your [API key](https://swanlab.cn/settings). | |
| 2. Set the environment variable `SWANLAB_API_KEY` to your [API key](https://swanlab.cn/settings). | |
| 3. Use the `swanlab login` command to complete the login. | |
| ## Projects using LLaMA Factory | |
| If you have a project that should be incorporated, please contact via email or create a pull request. | |
| <details><summary>Click to show</summary> | |
| 1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223) | |
| 1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092) | |
| 1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526) | |
| 1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816) | |
| 1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710) | |
| 1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319) | |
| 1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286) | |
| 1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904) | |
| 1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625) | |
| 1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176) | |
| 1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187) | |
| 1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746) | |
| 1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801) | |
| 1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809) | |
| 1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819) | |
| 1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204) | |
| 1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714) | |
| 1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043) | |
| 1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333) | |
| 1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419) | |
| 1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228) | |
| 1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073) | |
| 1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541) | |
| 1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246) | |
| 1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008) | |
| 1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443) | |
| 1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604) | |
| 1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827) | |
| 1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167) | |
| 1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316) | |
| 1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084) | |
| 1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836) | |
| 1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581) | |
| 1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215) | |
| 1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621) | |
| 1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140) | |
| 1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585) | |
| 1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760) | |
| 1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378) | |
| 1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055) | |
| 1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739) | |
| 1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816) | |
| 1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215) | |
| 1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30) | |
| 1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380) | |
| 1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106) | |
| 1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136) | |
| 1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496) | |
| 1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688) | |
| 1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955) | |
| 1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973) | |
| 1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115) | |
| 1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815) | |
| 1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099) | |
| 1. Ding et al. IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce. 2024. [[arxiv]](https://arxiv.org/abs/2406.10173) | |
| 1. He et al. COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large Language Models to Online Communities. 2024. [[arxiv]](https://arxiv.org/abs/2406.12074) | |
| 1. Lin et al. FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving. 2024. [[arxiv]](https://arxiv.org/abs/2406.14408) | |
| 1. Treutlein et al. Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data. 2024. [[arxiv]](https://arxiv.org/abs/2406.14546) | |
| 1. Feng et al. SS-Bench: A Benchmark for Social Story Generation and Evaluation. 2024. [[arxiv]](https://arxiv.org/abs/2406.15695) | |
| 1. Feng et al. Self-Constructed Context Decompilation with Fined-grained Alignment Enhancement. 2024. [[arxiv]](https://arxiv.org/abs/2406.17233) | |
| 1. Liu et al. Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals. 2024. [[arxiv]](https://arxiv.org/abs/2406.18069) | |
| 1. Iyer et al. Exploring Very Low-Resource Translation with LLMs: The University of Edinburgh's Submission to AmericasNLP 2024 Translation Task. AmericasNLP 2024. [[paper]](https://aclanthology.org/2024.americasnlp-1.25) | |
| 1. Li et al. Calibrating LLMs with Preference Optimization on Thought Trees for Generating Rationale in Science Question Scoring. 2024. [[arxiv]](https://arxiv.org/abs/2406.19949) | |
| 1. Yang et al. Financial Knowledge Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2407.00365) | |
| 1. Lin et al. DogeRM: Equipping Reward Models with Domain Knowledge through Model Merging. 2024. [[arxiv]](https://arxiv.org/abs/2407.01470) | |
| 1. Bako et al. Evaluating the Semantic Profiling Abilities of LLMs for Natural Language Utterances in Data Visualization. 2024. [[arxiv]](https://arxiv.org/abs/2407.06129) | |
| 1. Huang et al. RoLoRA: Fine-tuning Rotated Outlier-free LLMs for Effective Weight-Activation Quantization. 2024. [[arxiv]](https://arxiv.org/abs/2407.08044) | |
| 1. Jiang et al. LLM-Collaboration on Automatic Science Journalism for the General Audience. 2024. [[arxiv]](https://arxiv.org/abs/2407.09756) | |
| 1. Inouye et al. Applied Auto-tuning on LoRA Hyperparameters. 2024. [[paper]](https://scholarcommons.scu.edu/cseng_senior/272/) | |
| 1. Qi et al. Research on Tibetan Tourism Viewpoints information generation system based on LLM. 2024. [[arxiv]](https://arxiv.org/abs/2407.13561) | |
| 1. Xu et al. Course-Correction: Safety Alignment Using Synthetic Preferences. 2024. [[arxiv]](https://arxiv.org/abs/2407.16637) | |
| 1. Sun et al. LAMBDA: A Large Model Based Data Agent. 2024. [[arxiv]](https://arxiv.org/abs/2407.17535) | |
| 1. Zhu et al. CollectiveSFT: Scaling Large Language Models for Chinese Medical Benchmark with Collective Instructions in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2407.19705) | |
| 1. Yu et al. Correcting Negative Bias in Large Language Models through Negative Attention Score Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2408.00137) | |
| 1. Xie et al. The Power of Personalized Datasets: Advancing Chinese Composition Writing for Elementary School through Targeted Model Fine-Tuning. IALP 2024. [[paper]](https://www.asianlp.sg/conferences/ialp2024/proceedings/papers/IALP2024_P055.pdf) | |
| 1. Liu et al. Instruct-Code-Llama: Improving Capabilities of Language Model in Competition Level Code Generation by Online Judge Feedback. ICIC 2024. [[paper]](https://link.springer.com/chapter/10.1007/978-981-97-5669-8_11) | |
| 1. Wang et al. Cybernetic Sentinels: Unveiling the Impact of Safety Data Selection on Model Security in Supervised Fine-Tuning. ICIC 2024. [[paper]](https://link.springer.com/chapter/10.1007/978-981-97-5669-8_23) | |
| 1. Xia et al. Understanding the Performance and Estimating the Cost of LLM Fine-Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2408.04693) | |
| 1. Zeng et al. Perceive, Reflect, and Plan: Designing LLM Agent for Goal-Directed City Navigation without Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2408.04168) | |
| 1. Xia et al. Using Pre-trained Language Model for Accurate ESG Prediction. FinNLP 2024. [[paper]](https://aclanthology.org/2024.finnlp-2.1/) | |
| 1. Liang et al. I-SHEEP: Self-Alignment of LLM from Scratch through an Iterative Self-Enhancement Paradigm. 2024. [[arxiv]](https://arxiv.org/abs/2408.08072) | |
| 1. Bai et al. Aligning Large Language Model with Direct Multi-Preference Optimization for Recommendation. CIKM 2024. [[paper]](https://dl.acm.org/doi/10.1145/3627673.3679611) | |
| 1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B. | |
| 1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge. | |
| 1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B. | |
| 1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B. | |
| 1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods. | |
| 1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt) | |
| 1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B. | |
| 1. **[AutoRE](https://github.com/THUDM/AutoRE)**: A document-level relation extraction system based on large language models. | |
| 1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX. | |
| 1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory. | |
| 1. **[RAG-Retrieval](https://github.com/NLPJCL/RAG-Retrieval)**: A full pipeline for RAG retrieval model fine-tuning, inference, and distillation. [[blog]](https://zhuanlan.zhihu.com/p/987727357) | |
| 1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**: A modified library that supports long sequence SFT & DPO using ring attention. | |
| 1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**: An o1-like model fine-tuned by NovaSky AI with very small cost. | |
| </details> | |
| ## License | |
| This repository is licensed under the [Apache-2.0 License](LICENSE). | |
| Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Llama 4](https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan) | |
| ## Citation | |
| If this work is helpful, please kindly cite as: | |
| ```bibtex | |
| @inproceedings{zheng2024llamafactory, | |
| title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models}, | |
| author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma}, | |
| booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)}, | |
| address={Bangkok, Thailand}, | |
| publisher={Association for Computational Linguistics}, | |
| year={2024}, | |
| url={http://arxiv.org/abs/2403.13372} | |
| } | |
| ``` | |
| ## Acknowledgement | |
| This repo benefits from [PEFT](https://github.com/huggingface/peft), [TRL](https://github.com/huggingface/trl), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works. | |
| ## Star History | |
|  | |