Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#43
by
chaopro
- opened
app.py
CHANGED
|
@@ -1,521 +1,21 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
controlnet_model = ControlNetModel_Union.from_config(config)
|
| 23 |
-
model_file = hf_hub_download(
|
| 24 |
-
"xinsir/controlnet-union-sdxl-1.0",
|
| 25 |
-
filename="diffusion_pytorch_model_promax.safetensors",
|
| 26 |
-
)
|
| 27 |
-
state_dict = load_state_dict(model_file)
|
| 28 |
-
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
| 29 |
-
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
| 30 |
-
)
|
| 31 |
-
model.to(device="cuda", dtype=torch.float16)
|
| 32 |
-
|
| 33 |
-
vae = AutoencoderKL.from_pretrained(
|
| 34 |
-
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 35 |
-
).to("cuda")
|
| 36 |
-
|
| 37 |
-
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 38 |
-
"SG161222/RealVisXL_V5.0_Lightning",
|
| 39 |
-
torch_dtype=torch.float16,
|
| 40 |
-
vae=vae,
|
| 41 |
-
controlnet=model,
|
| 42 |
-
variant="fp16",
|
| 43 |
-
).to("cuda")
|
| 44 |
-
|
| 45 |
-
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
| 49 |
-
"""Checks if the image can be expanded based on the alignment."""
|
| 50 |
-
if alignment in ("Left", "Right") and source_width >= target_width:
|
| 51 |
-
return False
|
| 52 |
-
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
| 53 |
-
return False
|
| 54 |
-
return True
|
| 55 |
-
|
| 56 |
-
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 57 |
-
target_size = (width, height)
|
| 58 |
-
|
| 59 |
-
# Calculate the scaling factor to fit the image within the target size
|
| 60 |
-
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
| 61 |
-
new_width = int(image.width * scale_factor)
|
| 62 |
-
new_height = int(image.height * scale_factor)
|
| 63 |
-
|
| 64 |
-
# Resize the source image to fit within target size
|
| 65 |
-
source = image.resize((new_width, new_height), Image.LANCZOS)
|
| 66 |
-
|
| 67 |
-
# Apply resize option using percentages
|
| 68 |
-
if resize_option == "Full":
|
| 69 |
-
resize_percentage = 100
|
| 70 |
-
elif resize_option == "50%":
|
| 71 |
-
resize_percentage = 50
|
| 72 |
-
elif resize_option == "33%":
|
| 73 |
-
resize_percentage = 33
|
| 74 |
-
elif resize_option == "25%":
|
| 75 |
-
resize_percentage = 25
|
| 76 |
-
else: # Custom
|
| 77 |
-
resize_percentage = custom_resize_percentage
|
| 78 |
-
|
| 79 |
-
# Calculate new dimensions based on percentage
|
| 80 |
-
resize_factor = resize_percentage / 100
|
| 81 |
-
new_width = int(source.width * resize_factor)
|
| 82 |
-
new_height = int(source.height * resize_factor)
|
| 83 |
-
|
| 84 |
-
# Ensure minimum size of 64 pixels
|
| 85 |
-
new_width = max(new_width, 64)
|
| 86 |
-
new_height = max(new_height, 64)
|
| 87 |
-
|
| 88 |
-
# Resize the image
|
| 89 |
-
source = source.resize((new_width, new_height), Image.LANCZOS)
|
| 90 |
-
|
| 91 |
-
# Calculate the overlap in pixels based on the percentage
|
| 92 |
-
overlap_x = int(new_width * (overlap_percentage / 100))
|
| 93 |
-
overlap_y = int(new_height * (overlap_percentage / 100))
|
| 94 |
-
|
| 95 |
-
# Ensure minimum overlap of 1 pixel
|
| 96 |
-
overlap_x = max(overlap_x, 1)
|
| 97 |
-
overlap_y = max(overlap_y, 1)
|
| 98 |
-
|
| 99 |
-
# Calculate margins based on alignment
|
| 100 |
-
if alignment == "Middle":
|
| 101 |
-
margin_x = (target_size[0] - new_width) // 2
|
| 102 |
-
margin_y = (target_size[1] - new_height) // 2
|
| 103 |
-
elif alignment == "Left":
|
| 104 |
-
margin_x = 0
|
| 105 |
-
margin_y = (target_size[1] - new_height) // 2
|
| 106 |
-
elif alignment == "Right":
|
| 107 |
-
margin_x = target_size[0] - new_width
|
| 108 |
-
margin_y = (target_size[1] - new_height) // 2
|
| 109 |
-
elif alignment == "Top":
|
| 110 |
-
margin_x = (target_size[0] - new_width) // 2
|
| 111 |
-
margin_y = 0
|
| 112 |
-
elif alignment == "Bottom":
|
| 113 |
-
margin_x = (target_size[0] - new_width) // 2
|
| 114 |
-
margin_y = target_size[1] - new_height
|
| 115 |
-
|
| 116 |
-
# Adjust margins to eliminate gaps
|
| 117 |
-
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
| 118 |
-
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
| 119 |
-
|
| 120 |
-
# Create a new background image and paste the resized source image
|
| 121 |
-
background = Image.new('RGB', target_size, (255, 255, 255))
|
| 122 |
-
background.paste(source, (margin_x, margin_y))
|
| 123 |
-
|
| 124 |
-
# Create the mask
|
| 125 |
-
mask = Image.new('L', target_size, 255)
|
| 126 |
-
mask_draw = ImageDraw.Draw(mask)
|
| 127 |
-
|
| 128 |
-
# Calculate overlap areas
|
| 129 |
-
white_gaps_patch = 2
|
| 130 |
-
|
| 131 |
-
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
| 132 |
-
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
| 133 |
-
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
| 134 |
-
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
| 135 |
-
|
| 136 |
-
if alignment == "Left":
|
| 137 |
-
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
| 138 |
-
elif alignment == "Right":
|
| 139 |
-
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
|
| 140 |
-
elif alignment == "Top":
|
| 141 |
-
top_overlap = margin_y + overlap_y if overlap_top else margin_y
|
| 142 |
-
elif alignment == "Bottom":
|
| 143 |
-
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
# Draw the mask
|
| 147 |
-
mask_draw.rectangle([
|
| 148 |
-
(left_overlap, top_overlap),
|
| 149 |
-
(right_overlap, bottom_overlap)
|
| 150 |
-
], fill=0)
|
| 151 |
-
|
| 152 |
-
return background, mask
|
| 153 |
-
|
| 154 |
-
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 155 |
-
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 156 |
-
|
| 157 |
-
# Create a preview image showing the mask
|
| 158 |
-
preview = background.copy().convert('RGBA')
|
| 159 |
-
|
| 160 |
-
# Create a semi-transparent red overlay
|
| 161 |
-
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
|
| 162 |
-
|
| 163 |
-
# Convert black pixels in the mask to semi-transparent red
|
| 164 |
-
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
| 165 |
-
red_mask.paste(red_overlay, (0, 0), mask)
|
| 166 |
-
|
| 167 |
-
# Overlay the red mask on the background
|
| 168 |
-
preview = Image.alpha_composite(preview, red_mask)
|
| 169 |
-
|
| 170 |
-
return preview
|
| 171 |
-
|
| 172 |
-
@spaces.GPU()
|
| 173 |
-
def infer(
|
| 174 |
-
image,
|
| 175 |
-
width,
|
| 176 |
-
height,
|
| 177 |
-
overlap_percentage,
|
| 178 |
-
num_inference_steps,
|
| 179 |
-
resize_option,
|
| 180 |
-
custom_resize_percentage,
|
| 181 |
-
prompt_input,
|
| 182 |
-
alignment,
|
| 183 |
-
overlap_left,
|
| 184 |
-
overlap_right,
|
| 185 |
-
overlap_top,
|
| 186 |
-
overlap_bottom
|
| 187 |
-
):
|
| 188 |
-
"""
|
| 189 |
-
Generate an outpainted image using Stable Diffusion XL with ControlNet guidance.
|
| 190 |
-
|
| 191 |
-
This function performs intelligent image outpainting by expanding the input image
|
| 192 |
-
according to the specified target dimensions and alignment, generating new content
|
| 193 |
-
guided by a textual prompt. It uses a ControlNet-enabled diffusion pipeline to ensure
|
| 194 |
-
coherent image extension.
|
| 195 |
-
|
| 196 |
-
Args:
|
| 197 |
-
image (PIL.Image): The input image to be outpainted.
|
| 198 |
-
width (int): The target width of the output image.
|
| 199 |
-
height (int): The target height of the output image.
|
| 200 |
-
overlap_percentage (int): Percentage of overlap between original and outpainted regions for seamless blending.
|
| 201 |
-
num_inference_steps (int): Number of inference steps for image generation. Higher values yield better results.
|
| 202 |
-
resize_option (str): Predefined or custom percentage to resize the input image ("Full", "50%", "33%", "25%", or "Custom").
|
| 203 |
-
custom_resize_percentage (int): Custom resize percentage if resize_option is "Custom".
|
| 204 |
-
prompt_input (str): A text prompt describing desired content for the generated region.
|
| 205 |
-
alignment (str): Alignment of the original image within the canvas ("Middle", "Left", "Right", "Top", "Bottom").
|
| 206 |
-
overlap_left (bool): Whether to allow blending on the left edge.
|
| 207 |
-
overlap_right (bool): Whether to allow blending on the right edge.
|
| 208 |
-
overlap_top (bool): Whether to allow blending on the top edge.
|
| 209 |
-
overlap_bottom (bool): Whether to allow blending on the bottom edge.
|
| 210 |
-
|
| 211 |
-
Yields:
|
| 212 |
-
Tuple[PIL.Image, PIL.Image]:
|
| 213 |
-
- The intermediate ControlNet input image (showing the masked area).
|
| 214 |
-
- The final generated image with the inpainted region.
|
| 215 |
-
"""
|
| 216 |
-
#gr.Info("10 seconds will be used from your daily ZeroGPU time credits.")
|
| 217 |
-
background, mask = prepare_image_and_mask(
|
| 218 |
-
image, width, height, overlap_percentage,
|
| 219 |
-
resize_option, custom_resize_percentage, alignment,
|
| 220 |
-
overlap_left, overlap_right, overlap_top, overlap_bottom
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
if not can_expand(background.width, background.height, width, height, alignment):
|
| 224 |
-
alignment = "Middle"
|
| 225 |
-
|
| 226 |
-
cnet_image = background.copy()
|
| 227 |
-
cnet_image.paste(0, (0, 0), mask)
|
| 228 |
-
|
| 229 |
-
final_prompt = f"{prompt_input} , high quality, 4k"
|
| 230 |
-
|
| 231 |
-
(
|
| 232 |
-
prompt_embeds,
|
| 233 |
-
negative_prompt_embeds,
|
| 234 |
-
pooled_prompt_embeds,
|
| 235 |
-
negative_pooled_prompt_embeds,
|
| 236 |
-
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
| 237 |
-
|
| 238 |
-
for image in pipe(
|
| 239 |
-
prompt_embeds=prompt_embeds,
|
| 240 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
| 241 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 242 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 243 |
-
image=cnet_image,
|
| 244 |
-
num_inference_steps=num_inference_steps
|
| 245 |
-
):
|
| 246 |
-
yield cnet_image, image
|
| 247 |
-
|
| 248 |
-
#time.sleep(1)
|
| 249 |
-
#image = image.convert("RGBA")
|
| 250 |
-
#cnet_image.paste(image, (0, 0), mask)
|
| 251 |
-
|
| 252 |
-
#return background, cnet_image
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
def clear_result():
|
| 256 |
-
"""Clears the result ImageSlider."""
|
| 257 |
-
return gr.update(value=None)
|
| 258 |
-
|
| 259 |
-
def preload_presets(target_ratio, ui_width, ui_height):
|
| 260 |
-
"""Updates the width and height sliders based on the selected aspect ratio."""
|
| 261 |
-
if target_ratio == "9:16":
|
| 262 |
-
changed_width = 720
|
| 263 |
-
changed_height = 1280
|
| 264 |
-
return changed_width, changed_height, gr.update()
|
| 265 |
-
elif target_ratio == "16:9":
|
| 266 |
-
changed_width = 1280
|
| 267 |
-
changed_height = 720
|
| 268 |
-
return changed_width, changed_height, gr.update()
|
| 269 |
-
elif target_ratio == "1:1":
|
| 270 |
-
changed_width = 1024
|
| 271 |
-
changed_height = 1024
|
| 272 |
-
return changed_width, changed_height, gr.update()
|
| 273 |
-
elif target_ratio == "Custom":
|
| 274 |
-
return ui_width, ui_height, gr.update(open=True)
|
| 275 |
-
|
| 276 |
-
def select_the_right_preset(user_width, user_height):
|
| 277 |
-
if user_width == 720 and user_height == 1280:
|
| 278 |
-
return "9:16"
|
| 279 |
-
elif user_width == 1280 and user_height == 720:
|
| 280 |
-
return "16:9"
|
| 281 |
-
elif user_width == 1024 and user_height == 1024:
|
| 282 |
-
return "1:1"
|
| 283 |
-
else:
|
| 284 |
-
return "Custom"
|
| 285 |
-
|
| 286 |
-
def toggle_custom_resize_slider(resize_option):
|
| 287 |
-
return gr.update(visible=(resize_option == "Custom"))
|
| 288 |
-
|
| 289 |
-
def update_history(new_image, history):
|
| 290 |
-
"""Updates the history gallery with the new image."""
|
| 291 |
-
time.sleep(1)
|
| 292 |
-
if history is None:
|
| 293 |
-
history = []
|
| 294 |
-
history.insert(0, new_image)
|
| 295 |
-
return history
|
| 296 |
-
|
| 297 |
-
css = """
|
| 298 |
-
.gradio-container {
|
| 299 |
-
max-width: 1200px !important;
|
| 300 |
-
margin: 0 auto;
|
| 301 |
-
}
|
| 302 |
-
"""
|
| 303 |
-
|
| 304 |
-
title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
| 305 |
-
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
|
| 306 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
| 307 |
-
<p style="display: flex;gap: 6px;">
|
| 308 |
-
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpaint?duplicate=true">
|
| 309 |
-
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
|
| 310 |
-
</a> to skip the queue and enjoy faster inference on the GPU of your choice
|
| 311 |
-
</p>
|
| 312 |
-
</div>
|
| 313 |
-
"""
|
| 314 |
-
|
| 315 |
-
with gr.Blocks(css=css) as demo:
|
| 316 |
-
with gr.Column():
|
| 317 |
-
gr.HTML(title)
|
| 318 |
-
|
| 319 |
-
with gr.Row():
|
| 320 |
-
with gr.Column():
|
| 321 |
-
input_image = gr.Image(
|
| 322 |
-
type="pil",
|
| 323 |
-
label="Input Image"
|
| 324 |
-
)
|
| 325 |
-
|
| 326 |
-
with gr.Row():
|
| 327 |
-
with gr.Column(scale=2):
|
| 328 |
-
prompt_input = gr.Textbox(label="Prompt (Optional)")
|
| 329 |
-
with gr.Column(scale=1):
|
| 330 |
-
run_button = gr.Button("Generate")
|
| 331 |
-
|
| 332 |
-
with gr.Row():
|
| 333 |
-
target_ratio = gr.Radio(
|
| 334 |
-
label="Expected Ratio",
|
| 335 |
-
choices=["9:16", "16:9", "1:1", "Custom"],
|
| 336 |
-
value="9:16",
|
| 337 |
-
scale=2
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
alignment_dropdown = gr.Dropdown(
|
| 341 |
-
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
| 342 |
-
value="Middle",
|
| 343 |
-
label="Alignment"
|
| 344 |
-
)
|
| 345 |
-
|
| 346 |
-
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
| 347 |
-
with gr.Column():
|
| 348 |
-
with gr.Row():
|
| 349 |
-
width_slider = gr.Slider(
|
| 350 |
-
label="Target Width",
|
| 351 |
-
minimum=720,
|
| 352 |
-
maximum=1536,
|
| 353 |
-
step=8,
|
| 354 |
-
value=720, # Set a default value
|
| 355 |
-
)
|
| 356 |
-
height_slider = gr.Slider(
|
| 357 |
-
label="Target Height",
|
| 358 |
-
minimum=720,
|
| 359 |
-
maximum=1536,
|
| 360 |
-
step=8,
|
| 361 |
-
value=1280, # Set a default value
|
| 362 |
-
)
|
| 363 |
-
|
| 364 |
-
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
|
| 365 |
-
with gr.Group():
|
| 366 |
-
overlap_percentage = gr.Slider(
|
| 367 |
-
label="Mask overlap (%)",
|
| 368 |
-
minimum=1,
|
| 369 |
-
maximum=50,
|
| 370 |
-
value=10,
|
| 371 |
-
step=1
|
| 372 |
-
)
|
| 373 |
-
with gr.Row():
|
| 374 |
-
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
| 375 |
-
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
| 376 |
-
with gr.Row():
|
| 377 |
-
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
| 378 |
-
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
| 379 |
-
with gr.Row():
|
| 380 |
-
resize_option = gr.Radio(
|
| 381 |
-
label="Resize input image",
|
| 382 |
-
choices=["Full", "50%", "33%", "25%", "Custom"],
|
| 383 |
-
value="Full"
|
| 384 |
-
)
|
| 385 |
-
custom_resize_percentage = gr.Slider(
|
| 386 |
-
label="Custom resize (%)",
|
| 387 |
-
minimum=1,
|
| 388 |
-
maximum=100,
|
| 389 |
-
step=1,
|
| 390 |
-
value=50,
|
| 391 |
-
visible=False
|
| 392 |
-
)
|
| 393 |
-
|
| 394 |
-
with gr.Column():
|
| 395 |
-
preview_button = gr.Button("Preview alignment and mask")
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
gr.Examples(
|
| 399 |
-
examples=[
|
| 400 |
-
["./examples/example_1.webp", 1280, 720, "Middle"],
|
| 401 |
-
["./examples/example_2.jpg", 1440, 810, "Left"],
|
| 402 |
-
["./examples/example_3.jpg", 1024, 1024, "Top"],
|
| 403 |
-
["./examples/example_3.jpg", 1024, 1024, "Bottom"],
|
| 404 |
-
],
|
| 405 |
-
inputs=[input_image, width_slider, height_slider, alignment_dropdown],
|
| 406 |
-
)
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
with gr.Column():
|
| 411 |
-
result = ImageSlider(
|
| 412 |
-
interactive=False,
|
| 413 |
-
label="Generated Image",
|
| 414 |
-
)
|
| 415 |
-
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
| 416 |
-
|
| 417 |
-
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
| 418 |
-
preview_image = gr.Image(label="Preview")
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
def use_output_as_input(output_image):
|
| 423 |
-
"""Sets the generated output as the new input image."""
|
| 424 |
-
return gr.update(value=output_image[1])
|
| 425 |
-
|
| 426 |
-
use_as_input_button.click(
|
| 427 |
-
fn=use_output_as_input,
|
| 428 |
-
inputs=[result],
|
| 429 |
-
outputs=[input_image],
|
| 430 |
-
show_api=False
|
| 431 |
-
)
|
| 432 |
-
|
| 433 |
-
target_ratio.change(
|
| 434 |
-
fn=preload_presets,
|
| 435 |
-
inputs=[target_ratio, width_slider, height_slider],
|
| 436 |
-
outputs=[width_slider, height_slider, settings_panel],
|
| 437 |
-
queue=False,
|
| 438 |
-
show_api=False
|
| 439 |
-
)
|
| 440 |
-
|
| 441 |
-
width_slider.change(
|
| 442 |
-
fn=select_the_right_preset,
|
| 443 |
-
inputs=[width_slider, height_slider],
|
| 444 |
-
outputs=[target_ratio],
|
| 445 |
-
queue=False,
|
| 446 |
-
show_api=False
|
| 447 |
-
)
|
| 448 |
-
|
| 449 |
-
height_slider.change(
|
| 450 |
-
fn=select_the_right_preset,
|
| 451 |
-
inputs=[width_slider, height_slider],
|
| 452 |
-
outputs=[target_ratio],
|
| 453 |
-
queue=False,
|
| 454 |
-
show_api=False
|
| 455 |
-
)
|
| 456 |
-
|
| 457 |
-
resize_option.change(
|
| 458 |
-
fn=toggle_custom_resize_slider,
|
| 459 |
-
inputs=[resize_option],
|
| 460 |
-
outputs=[custom_resize_percentage],
|
| 461 |
-
queue=False,
|
| 462 |
-
show_api=False
|
| 463 |
-
)
|
| 464 |
-
|
| 465 |
-
run_button.click( # Clear the result
|
| 466 |
-
fn=clear_result,
|
| 467 |
-
inputs=None,
|
| 468 |
-
outputs=result,
|
| 469 |
-
show_api=False
|
| 470 |
-
).then( # Generate the new image
|
| 471 |
-
fn=infer,
|
| 472 |
-
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 473 |
-
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 474 |
-
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 475 |
-
outputs=result,
|
| 476 |
-
).then( # Show the "Use as Input Image" button
|
| 477 |
-
fn=lambda: gr.update(visible=True),
|
| 478 |
-
inputs=None,
|
| 479 |
-
outputs=use_as_input_button,
|
| 480 |
-
show_api=False
|
| 481 |
-
).then( # Update the history gallery
|
| 482 |
-
fn=lambda x, history: update_history(x[1], history),
|
| 483 |
-
inputs=[result, history_gallery],
|
| 484 |
-
outputs=history_gallery,
|
| 485 |
-
show_api=False
|
| 486 |
-
)
|
| 487 |
-
|
| 488 |
-
prompt_input.submit( # Clear the result
|
| 489 |
-
fn=clear_result,
|
| 490 |
-
inputs=None,
|
| 491 |
-
outputs=result,
|
| 492 |
-
show_api=False
|
| 493 |
-
).then( # Generate the new image
|
| 494 |
-
fn=infer,
|
| 495 |
-
inputs=[input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
| 496 |
-
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
| 497 |
-
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 498 |
-
outputs=result,
|
| 499 |
-
show_api=False
|
| 500 |
-
).then( # Update the history gallery
|
| 501 |
-
fn=lambda x, history: update_history(x[1], history),
|
| 502 |
-
inputs=[result, history_gallery],
|
| 503 |
-
outputs=history_gallery,
|
| 504 |
-
show_api=False
|
| 505 |
-
).then( # Show the "Use as Input Image" button
|
| 506 |
-
fn=lambda: gr.update(visible=True),
|
| 507 |
-
inputs=None,
|
| 508 |
-
outputs=use_as_input_button,
|
| 509 |
-
show_api=False
|
| 510 |
-
)
|
| 511 |
-
|
| 512 |
-
preview_button.click(
|
| 513 |
-
fn=preview_image_and_mask,
|
| 514 |
-
inputs=[input_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
|
| 515 |
-
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
| 516 |
-
outputs=preview_image,
|
| 517 |
-
queue=False,
|
| 518 |
-
show_api=False
|
| 519 |
-
)
|
| 520 |
-
|
| 521 |
-
demo.queue(max_size=12).launch(share=False, show_error=True, mcp_server=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import subprocess
|
| 4 |
+
|
| 5 |
+
def remove_subtitles(video):
|
| 6 |
+
input_path = video
|
| 7 |
+
output_path = "output.mp4"
|
| 8 |
+
cmd = f"python main.py --input_video {input_path} --output_video {output_path}"
|
| 9 |
+
subprocess.run(cmd, shell=True)
|
| 10 |
+
return output_path
|
| 11 |
+
|
| 12 |
+
with gr.Blocks() as demo:
|
| 13 |
+
gr.Markdown("## 🎬 Video Subtitle Remover (VSR)")
|
| 14 |
+
video_input = gr.Video(label="上传视频")
|
| 15 |
+
run_btn = gr.Button("去字幕")
|
| 16 |
+
video_output = gr.Video(label="处理后视频")
|
| 17 |
+
download = gr.File(label="下载结果")
|
| 18 |
+
run_btn.click(remove_subtitles, inputs=video_input, outputs=[video_output, download])
|
| 19 |
+
|
| 20 |
+
if __name__ == "__main__":
|
| 21 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|