Spaces:
Runtime error
Runtime error
| import os | |
| # os.system("pip install 'mmcv-full>=1.3.17,<=1.7.0'") | |
| os.system("pip install 'mmcv-full>=1.3.17,<=1.7.0'") | |
| os.system("pip install mmdet==2.25.1") | |
| os.system("git clone https://github.com/open-mmlab/mmtracking.git") | |
| os.system("pip install -r mmtracking/requirements.txt") | |
| os.system("pip install -v -e mmtracking/") | |
| os.system("pip install 'mmtrack'") | |
| import os | |
| import os.path as osp | |
| import gradio as gr | |
| import tempfile | |
| from argparse import ArgumentParser | |
| import mmcv | |
| from mmtrack.apis import inference_mot, init_model | |
| def parse_args(): | |
| parser = ArgumentParser() | |
| parser.add_argument('--config', help='config file') | |
| parser.add_argument('--input', help='input video file or folder') | |
| parser.add_argument( | |
| '--output', help='output video file (mp4 format) or folder') | |
| parser.add_argument('--checkpoint', help='checkpoint file') | |
| parser.add_argument( | |
| '--score-thr', | |
| type=float, | |
| default=0.0, | |
| help='The threshold of score to filter bboxes.') | |
| parser.add_argument( | |
| '--device', default='cuda:0', help='device used for inference') | |
| parser.add_argument( | |
| '--show', | |
| action='store_true', | |
| help='whether show the results on the fly') | |
| parser.add_argument( | |
| '--backend', | |
| choices=['cv2', 'plt'], | |
| default='cv2', | |
| help='the backend to visualize the results') | |
| parser.add_argument('--fps', help='FPS of the output video') | |
| args = parser.parse_args() | |
| return args | |
| def track_mot(input, config, output, device, score_thr): | |
| args = parse_args() | |
| args.input = input | |
| args.config = config | |
| args.output = output | |
| args.device = device | |
| args.score_thr = score_thr | |
| args.show = False | |
| args.backend = 'cv2' | |
| # assert args.output or args.show | |
| # load images | |
| if osp.isdir(args.input): | |
| imgs = sorted( | |
| filter(lambda x: x.endswith(('.jpg', '.png', '.jpeg')), | |
| os.listdir(args.input)), | |
| key=lambda x: int(x.split('.')[0])) | |
| IN_VIDEO = False | |
| else: | |
| imgs = mmcv.VideoReader(args.input) | |
| IN_VIDEO = True | |
| # define output | |
| if args.output is not None: | |
| if args.output.endswith('.mp4'): | |
| OUT_VIDEO = True | |
| out_dir = tempfile.TemporaryDirectory() | |
| out_path = out_dir.name | |
| _out = args.output.rsplit(os.sep, 1) | |
| if len(_out) > 1: | |
| os.makedirs(_out[0], exist_ok=True) | |
| else: | |
| OUT_VIDEO = False | |
| out_path = args.output | |
| os.makedirs(out_path, exist_ok=True) | |
| # | |
| fps = args.fps | |
| if args.show or OUT_VIDEO: | |
| if fps is None and IN_VIDEO: | |
| fps = imgs.fps | |
| if not fps: | |
| raise ValueError('Please set the FPS for the output video.') | |
| fps = int(fps) | |
| # | |
| # build the model from a config file and a checkpoint file | |
| model = init_model(args.config, args.checkpoint, device=args.device) | |
| prog_bar = mmcv.ProgressBar(len(imgs)) | |
| # test and show/save the images | |
| for i, img in enumerate(imgs): | |
| if isinstance(img, str): | |
| img = osp.join(args.input, img) | |
| result = inference_mot(model, img, frame_id=i) | |
| if args.output is not None: | |
| if IN_VIDEO or OUT_VIDEO: | |
| out_file = osp.join(out_path, f'{i:06d}.jpg') | |
| else: | |
| out_file = osp.join(out_path, img.rsplit(os.sep, 1)[-1]) | |
| else: | |
| out_file = None | |
| model.show_result( | |
| img, | |
| result, | |
| score_thr=args.score_thr, | |
| show=args.show, | |
| wait_time=int(1000. / fps) if fps else 0, | |
| out_file=out_file, | |
| backend=args.backend) | |
| prog_bar.update() | |
| if args.output and OUT_VIDEO: | |
| print(f'making the output video at {args.output} with a FPS of {fps}') | |
| mmcv.frames2video(out_path, args.output, fps=fps, fourcc='mp4v') | |
| out_dir.cleanup() | |
| # print("output:", out_dir) | |
| # return output | |
| # print("output:", out_dir) | |
| save_dir = 'mot.mp4' | |
| return save_dir | |
| if __name__ == '__main__': | |
| # main() | |
| input_video = gr.Video(type="mp4", label="Input Video") | |
| config = gr.inputs.Textbox(default="configs/mot/deepsort/sort_faster-rcnn_fpn_4e_mot17-private.py") | |
| output = gr.inputs.Textbox(default="mot.mp4", label="Output Video") | |
| device = gr.inputs.Radio(choices=["cpu", "cuda"], label="Device used for inference", default="cpu") | |
| score_thr = gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.3, label="The threshold of score to filter bboxes.") | |
| output_video = gr.Video(type="mp4", label="Output Image") | |
| title = "MMTracking web demo" | |
| description = "<div align='center'><img src='https://raw.githubusercontent.com/open-mmlab/mmtracking/master/resources/mmtrack-logo.png' width='450''/><div>" \ | |
| "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmtracking'>MMTracking</a> MMTracking是一款基于PyTorch的视频目标感知开源工具箱,是OpenMMLab项目的一部分。" \ | |
| "OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework..</p>" | |
| article = "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmtracking'>MMTracking</a></p>" \ | |
| "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmtracking'>gradio build by gatilin</a></a></p>" | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=track_mot, | |
| inputs=[ | |
| input_video, config, output, device, score_thr | |
| ], | |
| # outputs="playable_video", | |
| outputs=output_video, | |
| title=title, description=description, article=article, | |
| ) | |
| # Launch Gradio interface | |
| iface.launch() |