isLinXu
update
32a5465
import os
# os.system("pip install 'mmcv-full>=1.3.17,<=1.7.0'")
os.system("pip install 'mmcv-full>=1.3.17,<=1.7.0'")
os.system("pip install mmdet==2.25.1")
os.system("git clone https://github.com/open-mmlab/mmtracking.git")
os.system("pip install -r mmtracking/requirements.txt")
os.system("pip install -v -e mmtracking/")
os.system("pip install 'mmtrack'")
import os
import os.path as osp
import gradio as gr
import tempfile
from argparse import ArgumentParser
import mmcv
from mmtrack.apis import inference_mot, init_model
def parse_args():
parser = ArgumentParser()
parser.add_argument('--config', help='config file')
parser.add_argument('--input', help='input video file or folder')
parser.add_argument(
'--output', help='output video file (mp4 format) or folder')
parser.add_argument('--checkpoint', help='checkpoint file')
parser.add_argument(
'--score-thr',
type=float,
default=0.0,
help='The threshold of score to filter bboxes.')
parser.add_argument(
'--device', default='cuda:0', help='device used for inference')
parser.add_argument(
'--show',
action='store_true',
help='whether show the results on the fly')
parser.add_argument(
'--backend',
choices=['cv2', 'plt'],
default='cv2',
help='the backend to visualize the results')
parser.add_argument('--fps', help='FPS of the output video')
args = parser.parse_args()
return args
def track_mot(input, config, output, device, score_thr):
args = parse_args()
args.input = input
args.config = config
args.output = output
args.device = device
args.score_thr = score_thr
args.show = False
args.backend = 'cv2'
# assert args.output or args.show
# load images
if osp.isdir(args.input):
imgs = sorted(
filter(lambda x: x.endswith(('.jpg', '.png', '.jpeg')),
os.listdir(args.input)),
key=lambda x: int(x.split('.')[0]))
IN_VIDEO = False
else:
imgs = mmcv.VideoReader(args.input)
IN_VIDEO = True
# define output
if args.output is not None:
if args.output.endswith('.mp4'):
OUT_VIDEO = True
out_dir = tempfile.TemporaryDirectory()
out_path = out_dir.name
_out = args.output.rsplit(os.sep, 1)
if len(_out) > 1:
os.makedirs(_out[0], exist_ok=True)
else:
OUT_VIDEO = False
out_path = args.output
os.makedirs(out_path, exist_ok=True)
#
fps = args.fps
if args.show or OUT_VIDEO:
if fps is None and IN_VIDEO:
fps = imgs.fps
if not fps:
raise ValueError('Please set the FPS for the output video.')
fps = int(fps)
#
# build the model from a config file and a checkpoint file
model = init_model(args.config, args.checkpoint, device=args.device)
prog_bar = mmcv.ProgressBar(len(imgs))
# test and show/save the images
for i, img in enumerate(imgs):
if isinstance(img, str):
img = osp.join(args.input, img)
result = inference_mot(model, img, frame_id=i)
if args.output is not None:
if IN_VIDEO or OUT_VIDEO:
out_file = osp.join(out_path, f'{i:06d}.jpg')
else:
out_file = osp.join(out_path, img.rsplit(os.sep, 1)[-1])
else:
out_file = None
model.show_result(
img,
result,
score_thr=args.score_thr,
show=args.show,
wait_time=int(1000. / fps) if fps else 0,
out_file=out_file,
backend=args.backend)
prog_bar.update()
if args.output and OUT_VIDEO:
print(f'making the output video at {args.output} with a FPS of {fps}')
mmcv.frames2video(out_path, args.output, fps=fps, fourcc='mp4v')
out_dir.cleanup()
# print("output:", out_dir)
# return output
# print("output:", out_dir)
save_dir = 'mot.mp4'
return save_dir
if __name__ == '__main__':
# main()
input_video = gr.Video(type="mp4", label="Input Video")
config = gr.inputs.Textbox(default="configs/mot/deepsort/sort_faster-rcnn_fpn_4e_mot17-private.py")
output = gr.inputs.Textbox(default="mot.mp4", label="Output Video")
device = gr.inputs.Radio(choices=["cpu", "cuda"], label="Device used for inference", default="cpu")
score_thr = gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.3, label="The threshold of score to filter bboxes.")
output_video = gr.Video(type="mp4", label="Output Image")
title = "MMTracking web demo"
description = "<div align='center'><img src='https://raw.githubusercontent.com/open-mmlab/mmtracking/master/resources/mmtrack-logo.png' width='450''/><div>" \
"<p style='text-align: center'><a href='https://github.com/open-mmlab/mmtracking'>MMTracking</a> MMTracking是一款基于PyTorch的视频目标感知开源工具箱,是OpenMMLab项目的一部分。" \
"OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework..</p>"
article = "<p style='text-align: center'><a href='https://github.com/open-mmlab/mmtracking'>MMTracking</a></p>" \
"<p style='text-align: center'><a href='https://github.com/open-mmlab/mmtracking'>gradio build by gatilin</a></a></p>"
# Create Gradio interface
iface = gr.Interface(
fn=track_mot,
inputs=[
input_video, config, output, device, score_thr
],
# outputs="playable_video",
outputs=output_video,
title=title, description=description, article=article,
)
# Launch Gradio interface
iface.launch()