qwen2.5-omni / app.py
Gijs Wijngaard
init
49228ab
import gradio as gr
import torch
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
from qwen_omni_utils import process_mm_info
import spaces
MODEL_ID = "Qwen/Qwen2.5-Omni-7B" if False else "Qwen/Qwen2.5-Omni-7B" # keep explicit string
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
MODEL_ID,
torch_dtype="auto",
device_map="auto",
)
model.disable_talker()
processor = Qwen2_5OmniProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
@spaces.GPU
def run_omni(audio_path: str, instruction: str) -> str:
if not audio_path:
return "Please upload an audio file."
system_text = (
"You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, "
"capable of perceiving auditory and visual inputs, as well as generating text and speech."
)
conversation = [
{
"role": "system",
"content": [{"type": "text", "text": system_text}],
},
{
"role": "user",
"content": [
{"type": "audio", "audio_url": audio_path},
{"type": "text", "text": instruction},
],
},
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(conversation, use_audio_in_video=False)
inputs = processor(
text=text,
audio=audios,
images=images,
videos=videos,
return_tensors="pt",
padding=True,
)
inputs = inputs.to(model.device)
output_ids = model.generate(**inputs, max_new_tokens=4096)
output_ids = output_ids[:, inputs["input_ids"].shape[1]:]
response = processor.batch_decode(
output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return response
with gr.Blocks(title="Qwen2.5 Omni (Audio) Demo") as demo:
gr.Markdown("# Qwen2.5-Omni (Audio) Demo")
gr.Markdown("Upload an audio file and provide an instruction for the model.")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload Audio")
instruction = gr.Textbox(
label="Instruction",
value="Transcribe the audio, then summarize it in one sentence.",
)
submit_btn = gr.Button("Run", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Response", lines=14)
submit_btn.click(run_omni, [audio_input, instruction], output_text)
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False)