qwen2audio / app.py
Gijs Wijngaard
init
43faff9
import gradio as gr
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
import librosa
import spaces
MODEL_ID = "Qwen/Qwen2-Audio-7B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Qwen2AudioForConditionalGeneration.from_pretrained(MODEL_ID, device_map="auto")
@spaces.GPU
def run_qwen2audio(audio_path: str, instruction: str) -> str:
if not audio_path:
return "Please upload an audio file."
conversation = [
{
"role": "user",
"content": [
{"type": "audio", "audio_url": audio_path},
{"type": "text", "text": instruction},
],
}
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
target_sr = processor.feature_extractor.sampling_rate
audio, _ = librosa.load(audio_path, sr=target_sr)
audios.append(audio)
inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
inputs = inputs.to(model.device)
output_ids = model.generate(**inputs, max_new_tokens=4096)
output_ids = output_ids[:, inputs.input_ids.size(1):]
response = processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return response
with gr.Blocks(title="Qwen2-Audio Demo") as demo:
gr.Markdown("# Qwen2-Audio Demo")
gr.Markdown("Upload audio and run an instruction with Qwen2-Audio.")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload Audio")
instruction = gr.Textbox(label="Instruction", value="Transcribe the audio.")
submit_btn = gr.Button("Run", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Response", lines=12)
submit_btn.click(run_qwen2audio, [audio_input, instruction], output_text)
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False)