File size: 27,774 Bytes
63134d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import gradio as gr
import pickle
import torch
import numpy as np
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from nltk.tokenize import word_tokenize
import nltk
import time
import os

# Download required NLTK data
try:
    nltk.download('punkt', quiet=True)
    nltk.download('punkt_tab', quiet=True)
except:
    pass

# Global variables to store loaded model
loaded_model = None
loaded_tokenizer = None
loaded_config = None
generation_history = []

# Auto-load model on startup
def initialize_model():
    """Initialize model automatically on app startup"""
    return load_model_from_pickle("best_model.pkl")

def load_model_from_pickle(pickle_path="best_model.pkl"):
    """Load model from pickle file (auto-loads on startup)"""
    global loaded_model, loaded_tokenizer, loaded_config
    
    try:
        # Check if file exists
        if not os.path.exists(pickle_path):
            return f"❌ Model file not found: {pickle_path}\n\nPlease ensure best_model.pkl is uploaded to the HuggingFace Space."
        
        # Simple, direct load - model should already be CPU-compatible
        try:
            model_package = torch.load(pickle_path, map_location='cpu')
        except Exception as e:
            error_msg = str(e)
            
            # Check if it's the CUDA deserialization error
            if 'Attempting to deserialize object on a CUDA device' in error_msg:
                return """❌ Model file is GPU-trained and not CPU-compatible.

⚠️  SOLUTION: Convert the model on Colab BEFORE downloading:

Run this in your Colab notebook (where you trained the model):

```python
import torch
import pickle

# Load GPU model
with open('best_model.pkl', 'rb') as f:
    model_package = pickle.load(f)

# Move to CPU
if 'model' in model_package:
    model_package['model'] = model_package['model'].cpu()
    for param in model_package['model'].parameters():
        param.data = param.data.cpu()
    for buffer in model_package['model'].buffers():
        buffer.data = buffer.data.cpu()

# Save CPU version
torch.save(model_package, 'best_model_cpu.pkl')

# Download
from google.colab import files
files.download('best_model_cpu.pkl')
```

Then upload 'best_model_cpu.pkl' to this Space and rename it to 'best_model.pkl'.

πŸ“– See COLAB_INSTRUCTIONS.md for detailed steps.
"""
            else:
                return f"❌ Error loading model: {error_msg}\n\nPlease check that the file is a valid PyTorch pickle."
        
        # Success! Model loaded with one of the strategies above
        # Handle a few common package shapes.
        if isinstance(model_package, dict):
            loaded_model = model_package.get('model', None)
            loaded_tokenizer = model_package.get('tokenizer', None)
            loaded_config = model_package.get('config', {}) or {}
        else:
            # Unknown package format: assume the object itself is the model
            loaded_model = model_package
            loaded_tokenizer = None
            loaded_config = {}

        # If user saved a state_dict instead of a model object, provide guidance
        if isinstance(loaded_model, dict) and 'state_dict' in loaded_model:
            # the file contains something like {'state_dict': ...}
            return ("❌ The pickle appears to contain a state_dict rather than a full model object. "
                    "This app expects a pickled model object (model instance).\n"
                    "If you only have a state_dict, re-create the model architecture and load the state_dict before pickling, "
                    "or provide a pickled model object saved with torch.save(model, path).")

        if loaded_model is None:
            return ("❌ No model object found inside the pickle. Please ensure the pickle contains a dict with keys "
                    "'model', 'tokenizer', and 'config' (or the model object itself).")
        
        # Set model to evaluation mode and move to appropriate device
        try:
            loaded_model.eval()
            device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
            loaded_model = loaded_model.to(device)
        except Exception as e:
            return (f"❌ Error preparing model for inference: {str(e)}\n\n"
                    "This can happen if the saved object is not a proper torch.nn.Module or if tensors couldn't be mapped to the current device.")
        
        config_info = f"""βœ… Model loaded successfully!

πŸ“Š Model Configuration:
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
β€’ Base Model: {loaded_config.get('model_name', 'GPT-2')}
β€’ Training Epochs: {loaded_config.get('num_epochs', 'N/A')}
β€’ Training Samples: {loaded_config.get('training_samples', 'N/A'):,}
β€’ Validation Samples: {loaded_config.get('validation_samples', 'N/A'):,}
β€’ BLEU Score: {loaded_config.get('bleu_score', 0):.4f}
β€’ Perplexity: {loaded_config.get('perplexity', 0):.2f}
β€’ Final Loss: {loaded_config.get('final_loss', 0):.4f}
β€’ Device: {device}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

πŸš€ Model is ready to generate code!
"""
        
        return config_info
        
    except Exception as e:
        # Final catch-all for any unexpected errors
        err = str(e)
        return f"❌ Unexpected error loading model: {err}\n\nPlease ensure best_model.pkl is properly uploaded and compatible with this environment."

def calculate_bleu_score(reference, hypothesis):
    """Calculate BLEU score between reference and generated code"""
    try:
        # Tokenize
        ref_tokens = word_tokenize(reference.lower())
        hyp_tokens = word_tokenize(hypothesis.lower())
        
        # Calculate BLEU with smoothing
        smooth = SmoothingFunction()
        bleu_1 = sentence_bleu([ref_tokens], hyp_tokens, weights=(1, 0, 0, 0), smoothing_function=smooth.method1)
        bleu_2 = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.5, 0.5, 0, 0), smoothing_function=smooth.method1)
        bleu_3 = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.33, 0.33, 0.33, 0), smoothing_function=smooth.method1)
        bleu_4 = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smooth.method1)
        
        return bleu_1, bleu_2, bleu_3, bleu_4
    except Exception as e:
        return 0.0, 0.0, 0.0, 0.0

def calculate_code_metrics(reference, generated):
    """Calculate various code similarity metrics"""
    try:
        # Length ratio
        len_ratio = len(generated) / max(len(reference), 1)
        
        # Word overlap
        ref_words = set(reference.lower().split())
        gen_words = set(generated.lower().split())
        
        if len(ref_words) > 0:
            precision = len(ref_words.intersection(gen_words)) / len(gen_words) if len(gen_words) > 0 else 0
            recall = len(ref_words.intersection(gen_words)) / len(ref_words)
            f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
        else:
            precision = recall = f1 = 0
        
        # Character-level similarity
        char_overlap = sum(1 for c in generated if c in reference) / max(len(generated), 1)
        
        return {
            'length_ratio': len_ratio,
            'precision': precision,
            'recall': recall,
            'f1_score': f1,
            'char_overlap': char_overlap
        }
    except Exception as e:
        return {
            'length_ratio': 0,
            'precision': 0,
            'recall': 0,
            'f1_score': 0,
            'char_overlap': 0
        }

def generate_code_from_pseudo(pseudo_code, max_length, temperature, top_k, top_p, num_sequences, reference_code):
    """Generate code from pseudo-code using loaded model"""
    global loaded_model, loaded_tokenizer, generation_history
    
    if loaded_model is None or loaded_tokenizer is None:
        return "❌ Please upload and load a model first!", "", "", ""
    
    if not pseudo_code.strip():
        return "❌ Please enter pseudo-code description!", "", "", ""
    
    try:
        start_time = time.time()
        
        # Format input
        prompt = f"<PSEUDO> {pseudo_code.strip()} <SEP> <CODE>"
        
        # Tokenize
        device = next(loaded_model.parameters()).device
        inputs = loaded_tokenizer(prompt, return_tensors='pt').to(device)
        
        # Generate (ensure type safety for parameters)
        with torch.no_grad():
            outputs = loaded_model.generate(
                **inputs,
                max_length=int(max_length),
                temperature=float(temperature),
                top_k=int(top_k),
                top_p=float(top_p),
                do_sample=True,
                num_return_sequences=int(num_sequences),
                pad_token_id=loaded_tokenizer.pad_token_id,
                eos_token_id=loaded_tokenizer.eos_token_id,
            )
        
        generation_time = time.time() - start_time
        
        # Decode all sequences
        generated_codes = []
        for output in outputs:
            generated = loaded_tokenizer.decode(output, skip_special_tokens=False)
            
            # Extract code part
            if '<CODE>' in generated:
                code = generated.split('<CODE>')[-1].strip()
                # Remove special tokens
                code = code.replace('<PAD>', '').replace('<SEP>', '').strip()
            else:
                code = generated
            
            generated_codes.append(code)
        
        # Use the first generated code as primary output
        primary_code = generated_codes[0]
        
        # Calculate metrics if reference code is provided
        metrics_output = ""
        bleu_output = ""
        
        if reference_code and reference_code.strip():
            # Calculate BLEU scores
            bleu_1, bleu_2, bleu_3, bleu_4 = calculate_bleu_score(reference_code, primary_code)
            
            bleu_output = f"""πŸ“Š BLEU Scores:
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
β€’ BLEU-1 (Unigram): {bleu_1:.4f} ({bleu_1*100:.2f}%)
β€’ BLEU-2 (Bigram):  {bleu_2:.4f} ({bleu_2*100:.2f}%)
β€’ BLEU-3 (Trigram): {bleu_3:.4f} ({bleu_3*100:.2f}%)
β€’ BLEU-4 (4-gram):  {bleu_4:.4f} ({bleu_4*100:.2f}%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

πŸ’‘ Interpretation:
β€’ BLEU > 0.4: Excellent match
β€’ BLEU 0.3-0.4: Good match
β€’ BLEU 0.2-0.3: Fair match
β€’ BLEU < 0.2: Poor match
"""
            
            # Calculate additional metrics
            code_metrics = calculate_code_metrics(reference_code, primary_code)
            
            metrics_output = f"""πŸ“ˆ Additional Metrics:
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
β€’ Length Ratio: {code_metrics['length_ratio']:.3f}
β€’ Precision: {code_metrics['precision']:.4f} ({code_metrics['precision']*100:.2f}%)
β€’ Recall: {code_metrics['recall']:.4f} ({code_metrics['recall']*100:.2f}%)
β€’ F1-Score: {code_metrics['f1_score']:.4f} ({code_metrics['f1_score']*100:.2f}%)
β€’ Character Overlap: {code_metrics['char_overlap']:.4f} ({code_metrics['char_overlap']*100:.2f}%)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⏱️ Generation Time: {generation_time:.2f}s
πŸ“ Sequences Generated: {num_sequences}
πŸ”’ Output Length: {len(primary_code)} characters
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
"""
        else:
            metrics_output = f"""⏱️ Generation Time: {generation_time:.2f}s
πŸ“ Sequences Generated: {num_sequences}
πŸ”’ Output Length: {len(primary_code)} characters

πŸ’‘ Tip: Provide reference code to see BLEU scores and similarity metrics!
"""
        
        # Format alternative sequences
        alternatives = ""
        if num_sequences > 1:
            alternatives = "πŸ”„ Alternative Generations:\n" + "━"*50 + "\n\n"
            for i, code in enumerate(generated_codes[1:], 2):
                alternatives += f"Variation {i}:\n```python\n{code}\n```\n\n"
        
        # Add to history
        generation_history.append({
            'pseudo': pseudo_code,
            'generated': primary_code,
            'bleu_4': bleu_4 if reference_code else None,
            'time': generation_time
        })
        
        return primary_code, metrics_output, bleu_output, alternatives
        
    except Exception as e:
        return f"❌ Error generating code: {str(e)}", "", "", ""

def show_examples(example_name):
    """Load example pseudo-code"""
    examples = {
        "Basic Loop": "create a list of numbers from 1 to 10",
        "Function Definition": "define a function to calculate the sum of two numbers",
        "List Iteration": "iterate through a list and print each element",
        "Conditional Check": "check if a number is even or odd",
        "Sorting": "sort a list in descending order",
        "Maximum Element": "create a function to find maximum element in array",
        "Binary Search": "implement binary search algorithm",
        "Factorial": "create a recursive function to calculate factorial",
        "Palindrome": "check if a string is palindrome",
        "Fibonacci": "generate fibonacci sequence up to n terms"
    }
    return examples.get(example_name, "")

def clear_all():
    """Clear all inputs and outputs"""
    return "", "", "", "", "", 150, 0.7, 50, 0.95, 1

def show_history():
    """Display generation history"""
    if not generation_history:
        return "No generation history yet. Start generating code!"
    
    history_text = "πŸ“œ Generation History:\n" + "="*60 + "\n\n"
    
    for i, entry in enumerate(reversed(generation_history[-10:]), 1):  # Show last 10
        history_text += f"{i}. Pseudo: {entry['pseudo'][:60]}...\n"
        history_text += f"   Time: {entry['time']:.2f}s"
        if entry['bleu_4'] is not None:
            history_text += f" | BLEU-4: {entry['bleu_4']:.4f}"
        history_text += f"\n   Code: {entry['generated'][:80]}...\n\n"
    
    return history_text

# Create Gradio interface with custom CSS
custom_css = """
.gradio-container {
    font-family: 'Arial', sans-serif;
}
.output-code {
    font-family: 'Courier New', monospace;
    font-size: 14px;
}
.metrics-box {
    background-color: #f0f8ff;
    border-radius: 8px;
    padding: 10px;
}
"""

with gr.Blocks(title="πŸš€ GPT-2 Pseudo-Code to Code Generator", theme=gr.themes.Soft(), css=custom_css) as demo:
    
    gr.Markdown("""
    # πŸš€ GPT-2 Pseudo-Code to Python Code Generator
    
    **Transform natural language descriptions into executable Python code using fine-tuned GPT-2!**
    
    This model is trained on the SPOC (Search-based Pseudo-code to Code) dataset and can generate Python code from pseudo-code descriptions.
    """)
    
    with gr.Tabs():
        # Tab 1: Code Generation
        with gr.Tab("πŸ’» Code Generation"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### οΏ½ Model Status")
                    model_status = gr.Textbox(
                        label="Model Information",
                        lines=15,
                        interactive=False,
                        value=initialize_model()  # Auto-load on startup
                    )
            
            gr.Markdown("---")
            
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### ✍️ Enter Pseudo-Code")
                    
                    # Example selector
                    with gr.Row():
                        example_dropdown = gr.Dropdown(
                            choices=["Basic Loop", "Function Definition", "List Iteration", 
                                   "Conditional Check", "Sorting", "Maximum Element", 
                                   "Binary Search", "Factorial", "Palindrome", "Fibonacci"],
                            label="πŸ“š Load Example",
                            value=None
                        )
                    
                    pseudo_input = gr.Textbox(
                        label="Pseudo-Code Description",
                        placeholder="Example: create a function to calculate factorial of a number",
                        lines=4
                    )
                    
                    reference_code = gr.Textbox(
                        label="Reference Code (Optional - for BLEU score calculation)",
                        placeholder="Paste reference code here to calculate BLEU scores...",
                        lines=4
                    )
                    
                    gr.Markdown("### βš™οΈ Generation Parameters")
                    with gr.Row():
                        max_length = gr.Slider(
                            minimum=50,
                            maximum=500,
                            value=150,
                            step=10,
                            label="Max Length",
                            info="Maximum tokens to generate"
                        )
                        temperature = gr.Slider(
                            minimum=0.1,
                            maximum=1.5,
                            value=0.7,
                            step=0.1,
                            label="Temperature",
                            info="Higher = more creative"
                        )
                    
                    with gr.Row():
                        top_k = gr.Slider(
                            minimum=10,
                            maximum=100,
                            value=50,
                            step=5,
                            label="Top-K",
                            info="Vocabulary filtering"
                        )
                        top_p = gr.Slider(
                            minimum=0.5,
                            maximum=1.0,
                            value=0.95,
                            step=0.05,
                            label="Top-P",
                            info="Nucleus sampling"
                        )
                    
                    num_sequences = gr.Slider(
                        minimum=1,
                        maximum=5,
                        value=1,
                        step=1,
                        label="Number of Variations",
                        info="Generate multiple versions"
                    )
                    
                    with gr.Row():
                        generate_btn = gr.Button("✨ Generate Code", variant="primary", size="lg")
                        clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
                
                with gr.Column(scale=1):
                    gr.Markdown("### πŸ’» Generated Python Code")
                    code_output = gr.Code(
                        label="Generated Code",
                        language="python",
                        lines=12,
                        elem_classes="output-code"
                    )
                    
                    with gr.Row():
                        with gr.Column():
                            metrics_output = gr.Textbox(
                                label="πŸ“Š Performance Metrics",
                                lines=8,
                                interactive=False,
                                elem_classes="metrics-box"
                            )
                        with gr.Column():
                            bleu_output = gr.Textbox(
                                label="🎯 BLEU Scores",
                                lines=8,
                                interactive=False,
                                elem_classes="metrics-box"
                            )
                    
                    alternatives_output = gr.Markdown(
                        label="πŸ”„ Alternative Generations"
                    )
        
        # Tab 2: Information & Guide
        with gr.Tab("πŸ“– Guide & Examples"):
            gr.Markdown("""
            ## πŸ“š How to Use
            
            ### 1️⃣ Load Your Model
            - Upload the `best_model.pkl` file (trained GPT-2 model)
            - Click "Load Model" and wait for confirmation
            - You'll see model configuration and training metrics
            
            ### 2️⃣ Generate Code
            - **Quick Start**: Select an example from the dropdown
            - **Custom Input**: Type your own pseudo-code description
            - **Optional**: Add reference code to calculate BLEU scores
            - Adjust generation parameters for different outputs
            - Click "Generate Code"
            
            ### 3️⃣ Understand the Metrics
            
            #### 🎯 BLEU Score (Bilingual Evaluation Understudy)
            - Measures similarity between generated and reference code
            - **BLEU-1**: Word-level similarity (unigrams)
            - **BLEU-2**: 2-word phrase similarity (bigrams)
            - **BLEU-3**: 3-word phrase similarity (trigrams)
            - **BLEU-4**: 4-word phrase similarity (most comprehensive)
            
            **Score Interpretation:**
            - 🟒 **> 0.4**: Excellent match - Generated code is very similar to reference
            - 🟑 **0.3-0.4**: Good match - Code captures most key elements
            - 🟠 **0.2-0.3**: Fair match - Some similarity exists
            - πŸ”΄ **< 0.2**: Poor match - Significant differences
            
            #### πŸ“ˆ Additional Metrics
            - **Precision**: How many generated words appear in reference
            - **Recall**: How many reference words appear in generated code
            - **F1-Score**: Harmonic mean of precision and recall
            - **Length Ratio**: Generated vs reference code length
            - **Character Overlap**: Character-level similarity
            
            ### πŸŽ›οΈ Generation Parameters
            
            | Parameter | Low Value | High Value | Use Case |
            |-----------|-----------|------------|----------|
            | **Temperature** | 0.1-0.3 | 0.8-1.2 | Low: Deterministic, focused<br>High: Creative, diverse |
            | **Top-K** | 10-30 | 60-100 | Low: Conservative choices<br>High: More variety |
            | **Top-P** | 0.5-0.8 | 0.9-1.0 | Low: Safe predictions<br>High: Exploratory |
            | **Max Length** | 50-100 | 200-500 | Short: Simple code<br>Long: Complex implementations |
            
            ---
            
            ## πŸ’‘ Example Pseudo-Code Prompts
            
            ### Basic Operations
            ```
            create a list of numbers from 1 to 10
            define a function to calculate the sum of two numbers
            iterate through a list and print each element
            ```
            
            ### Conditionals & Logic
            ```
            check if a number is even or odd
            find the maximum of three numbers
            validate if a string is empty
            ```
            
            ### Data Structures
            ```
            sort a list in descending order
            remove duplicates from a list
            merge two dictionaries
            ```
            
            ### Algorithms
            ```
            implement binary search algorithm
            create a recursive function to calculate factorial
            generate fibonacci sequence up to n terms
            check if a string is palindrome
            ```
            
            ### Advanced
            ```
            create a class to represent a student with name and grades
            implement a function to read CSV file and return dataframe
            create a decorator to measure function execution time
            ```
            
            ---
            
            ## πŸŽ“ About the Model
            
            This model is fine-tuned on the **SPOC (Search-based Pseudo-code to Code)** dataset:
            - πŸ“„ Paper: [SPOC: Search-based Pseudo-code to Code](https://arxiv.org/pdf/1906.04908)
            - πŸ›οΈ Source: Stanford University
            - πŸ€– Base Model: GPT-2 (Decoder-Only Transformer)
            - πŸ“Š Training: 10,000+ pseudo-code to code pairs
            - 🎯 Task: Causal Language Modeling
            
            ---
            
            ## ⚠️ Limitations
            
            - Model may not handle very complex algorithms perfectly
            - Generated code should be tested before production use
            - Best results with clear, specific pseudo-code descriptions
            - Model trained on C++ code, adapted for Python generation
            
            ---
            
            ## 🀝 Tips for Best Results
            
            1. βœ… **Be Specific**: "create a function to sort list in ascending order" vs "sort list"
            2. βœ… **Use Action Words**: "create", "define", "implement", "calculate"
            3. βœ… **Mention Data Types**: "list", "string", "dictionary", "integer"
            4. βœ… **Include Details**: "recursive function" vs just "function"
            5. βœ… **Try Variations**: Generate multiple times with different temperatures
            
            """)
        
        # Tab 3: History
        with gr.Tab("πŸ“œ History"):
            gr.Markdown("## πŸ“Š Generation History")
            history_display = gr.Textbox(
                label="Recent Generations",
                lines=20,
                interactive=False
            )
            refresh_history_btn = gr.Button("πŸ”„ Refresh History", variant="secondary")
    
    gr.Markdown("""
    ---
    ### 🌟 Features
    - βœ… Upload and use custom trained models
    - βœ… BLEU score calculation for quality assessment
    - βœ… Multiple evaluation metrics (Precision, Recall, F1)
    - βœ… Generate multiple code variations
    - βœ… Real-time performance tracking
    - βœ… Example prompts library
    - βœ… Generation history
    
    ### πŸ“ Citation
    If you use this model, please cite:
    ```
    @article{kulal2019spoc,
      title={SPOC: Search-based Pseudo-code to Code},
      author={Kulal, Sumith and Pasupat, Panupong and Chandra, Kartik and Lee, Mina and Padon, Oded and Aiken, Alex and Liang, Percy},
      journal={arXiv preprint arXiv:1906.04908},
      year={2019}
    }
    ```
    
    **Built with ❀️ using HuggingFace Transformers & Gradio**
    """)
    
    # Event handlers
    example_dropdown.change(
        fn=show_examples,
        inputs=[example_dropdown],
        outputs=[pseudo_input]
    )
    
    generate_btn.click(
        fn=generate_code_from_pseudo,
        inputs=[pseudo_input, max_length, temperature, top_k, top_p, num_sequences, reference_code],
        outputs=[code_output, metrics_output, bleu_output, alternatives_output]
    )
    
    clear_btn.click(
        fn=clear_all,
        inputs=[],
        outputs=[pseudo_input, reference_code, code_output, metrics_output, bleu_output, 
                max_length, temperature, top_k, top_p, num_sequences]
    )
    
    refresh_history_btn.click(
        fn=show_history,
        inputs=[],
        outputs=[history_display]
    )

# Launch the interface
if __name__ == "__main__":
    demo.launch(share=False)