Spaces:
Sleeping
Sleeping
File size: 50,776 Bytes
63134d2 b7bd99f 63134d2 2711df5 63134d2 2deb22c d8f3c7f 2deb22c d8f3c7f 2deb22c d8f3c7f 2deb22c d8f3c7f 2deb22c d8f3c7f 2deb22c d8f3c7f 8408a2c 63134d2 2deb22c d8f3c7f 63134d2 b7bd99f 63134d2 b7bd99f 63134d2 b7bd99f 2711df5 b7bd99f 2711df5 63134d2 d99cd3e 63134d2 d99cd3e 0958ebc d99cd3e 0958ebc a52cd7c 0958ebc a52cd7c 16b9485 0958ebc 16b9485 0958ebc 16b9485 0958ebc a52cd7c d99cd3e a52cd7c d99cd3e 0958ebc a52cd7c 0958ebc 16b9485 0958ebc d99cd3e 0958ebc a52cd7c 0958ebc a52cd7c 0958ebc a52cd7c 0958ebc a52cd7c 0958ebc a52cd7c 0958ebc a52cd7c 0958ebc a52cd7c d99cd3e a52cd7c 2deb22c e2f0db1 d8f3c7f e2f0db1 a52cd7c d99cd3e a52cd7c 16b9485 a52cd7c d99cd3e a52cd7c 63134d2 d99cd3e 63134d2 d99cd3e e519124 63134d2 e519124 63134d2 d99cd3e 63134d2 e519124 63134d2 e519124 63134d2 e519124 63134d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 |
import gradio as gr
import pickle
import torch
import numpy as np
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from nltk.tokenize import word_tokenize
import nltk
import time
import os
# Download required NLTK data
try:
nltk.download('punkt', quiet=True)
nltk.download('punkt_tab', quiet=True)
except:
pass
# Global variables to store loaded model
loaded_model = None
loaded_tokenizer = None
loaded_config = None
generation_history = []
# Auto-load model on startup
def initialize_model():
"""Initialize model automatically on app startup"""
return load_model_from_pickle("best_model.pkl")
def load_model_from_pickle(pickle_path="best_model.pkl"):
"""Load model from pickle file (auto-loads on startup)"""
global loaded_model, loaded_tokenizer, loaded_config
try:
# Check if file exists
if not os.path.exists(pickle_path):
return f"β Model file not found: {pickle_path}\n\nPlease ensure best_model.pkl is uploaded to the HuggingFace Space."
# Simple, direct load - model should already be CPU-compatible
try:
model_package = torch.load(pickle_path, map_location='cpu')
except Exception as e:
error_msg = str(e)
# Check if it's the CUDA deserialization error
if 'Attempting to deserialize object on a CUDA device' in error_msg:
return """β Model file is GPU-trained and not CPU-compatible.
β οΈ SOLUTION: Convert the model on Colab BEFORE downloading:
Run this in your Colab notebook (where you trained the model):
```python
import torch
import pickle
# Load GPU model
with open('best_model.pkl', 'rb') as f:
model_package = pickle.load(f)
# Move to CPU
if 'model' in model_package:
model_package['model'] = model_package['model'].cpu()
for param in model_package['model'].parameters():
param.data = param.data.cpu()
for buffer in model_package['model'].buffers():
buffer.data = buffer.data.cpu()
# Save CPU version
torch.save(model_package, 'best_model_cpu.pkl')
# Download
from google.colab import files
files.download('best_model_cpu.pkl')
```
Then upload 'best_model_cpu.pkl' to this Space and rename it to 'best_model.pkl'.
π See COLAB_INSTRUCTIONS.md for detailed steps.
"""
else:
return f"β Error loading model: {error_msg}\n\nPlease check that the file is a valid PyTorch pickle."
# Success! Model loaded with one of the strategies above
# Handle a few common package shapes.
if isinstance(model_package, dict):
loaded_model = model_package.get('model', None)
loaded_tokenizer = model_package.get('tokenizer', None)
loaded_config = model_package.get('config', {}) or {}
else:
# Unknown package format: assume the object itself is the model
loaded_model = model_package
loaded_tokenizer = None
loaded_config = {}
# If user saved a state_dict instead of a model object, provide guidance
if isinstance(loaded_model, dict) and 'state_dict' in loaded_model:
# the file contains something like {'state_dict': ...}
return ("β The pickle appears to contain a state_dict rather than a full model object. "
"This app expects a pickled model object (model instance).\n"
"If you only have a state_dict, re-create the model architecture and load the state_dict before pickling, "
"or provide a pickled model object saved with torch.save(model, path).")
if loaded_model is None:
return ("β No model object found inside the pickle. Please ensure the pickle contains a dict with keys "
"'model', 'tokenizer', and 'config' (or the model object itself).")
# Fix tokenizer compatibility issues
if loaded_tokenizer is not None:
try:
# Ensure tokenizer has required attributes for generation
if not hasattr(loaded_tokenizer, 'pad_token_id') or loaded_tokenizer.pad_token_id is None:
loaded_tokenizer.pad_token_id = loaded_tokenizer.eos_token_id
# Fix missing _unk_token attribute (common in older tokenizers)
if not hasattr(loaded_tokenizer, '_unk_token'):
if hasattr(loaded_tokenizer, 'unk_token'):
loaded_tokenizer._unk_token = loaded_tokenizer.unk_token
else:
loaded_tokenizer._unk_token = '<unk>'
# Ensure other critical attributes exist
if not hasattr(loaded_tokenizer, '_bos_token'):
loaded_tokenizer._bos_token = getattr(loaded_tokenizer, 'bos_token', '<s>')
if not hasattr(loaded_tokenizer, '_eos_token'):
loaded_tokenizer._eos_token = getattr(loaded_tokenizer, 'eos_token', '</s>')
# Test tokenizer basic functionality
test_encode = loaded_tokenizer("test", return_tensors='pt')
test_decode = loaded_tokenizer.decode(test_encode['input_ids'][0])
except Exception as tokenizer_error:
# Tokenizer is broken, try to recreate it
try:
from transformers import GPT2Tokenizer
print(f"β οΈ Loaded tokenizer has issues ({tokenizer_error}), recreating from GPT-2...")
loaded_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# Ensure pad token is set
if loaded_tokenizer.pad_token_id is None:
loaded_tokenizer.pad_token_id = loaded_tokenizer.eos_token_id
except Exception as recreate_error:
return f"β Tokenizer error: {tokenizer_error}\nRecreation failed: {recreate_error}\n\nPlease ensure the tokenizer is compatible with current transformers version."
# Set model to evaluation mode and move to appropriate device
try:
loaded_model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
loaded_model = loaded_model.to(device)
# Fix generation config compatibility issues
if hasattr(loaded_model, 'generation_config'):
gen_config = loaded_model.generation_config
# Remove problematic attributes that don't exist in current transformers version
problematic_attrs = [
'forced_decoder_ids', 'forced_bos_token_id', 'forced_eos_token_id',
'suppress_tokens', 'begin_suppress_tokens', 'decoder_start_token_id'
]
for attr in problematic_attrs:
if hasattr(gen_config, attr):
try:
delattr(gen_config, attr)
except:
pass
# Ensure required attributes exist with safe defaults
if not hasattr(gen_config, 'pad_token_id') or gen_config.pad_token_id is None:
gen_config.pad_token_id = loaded_tokenizer.eos_token_id if loaded_tokenizer else 50256
if not hasattr(gen_config, 'eos_token_id') or gen_config.eos_token_id is None:
gen_config.eos_token_id = loaded_tokenizer.eos_token_id if loaded_tokenizer else 50256
if not hasattr(gen_config, 'bos_token_id'):
gen_config.bos_token_id = loaded_tokenizer.bos_token_id if loaded_tokenizer else 50256
else:
# Create a basic generation config if missing
from transformers import GenerationConfig
loaded_model.generation_config = GenerationConfig(
pad_token_id=loaded_tokenizer.eos_token_id if loaded_tokenizer else 50256,
eos_token_id=loaded_tokenizer.eos_token_id if loaded_tokenizer else 50256,
do_sample=True,
max_length=512
)
except Exception as e:
return (f"β Error preparing model for inference: {str(e)}\n\n"
"This can happen if the saved object is not a proper torch.nn.Module or if tensors couldn't be mapped to the current device.")
config_info = f"""β
Model loaded successfully!
π Model Configuration:
ββββββββββββββββββββββββββββββββββββββββ
β’ Base Model: {loaded_config.get('model_name', 'GPT-2')}
β’ Training Epochs: {loaded_config.get('num_epochs', 'N/A')}
β’ Training Samples: {loaded_config.get('training_samples', 'N/A'):,}
β’ Validation Samples: {loaded_config.get('validation_samples', 'N/A'):,}
β’ BLEU Score: {loaded_config.get('bleu_score', 0):.4f}
β’ Perplexity: {loaded_config.get('perplexity', 0):.2f}
β’ Final Loss: {loaded_config.get('final_loss', 0):.4f}
β’ Device: {device}
ββββββββββββββββββββββββββββββββββββββββ
π Model is ready to generate code!
"""
return config_info
except Exception as e:
# Final catch-all for any unexpected errors
err = str(e)
return f"β Unexpected error loading model: {err}\n\nPlease ensure best_model.pkl is properly uploaded and compatible with this environment."
def calculate_bleu_score(reference, hypothesis):
"""Calculate BLEU score between reference and generated code"""
try:
# Tokenize
ref_tokens = word_tokenize(reference.lower())
hyp_tokens = word_tokenize(hypothesis.lower())
# Calculate BLEU with smoothing
smooth = SmoothingFunction()
bleu_1 = sentence_bleu([ref_tokens], hyp_tokens, weights=(1, 0, 0, 0), smoothing_function=smooth.method1)
bleu_2 = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.5, 0.5, 0, 0), smoothing_function=smooth.method1)
bleu_3 = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.33, 0.33, 0.33, 0), smoothing_function=smooth.method1)
bleu_4 = sentence_bleu([ref_tokens], hyp_tokens, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smooth.method1)
return bleu_1, bleu_2, bleu_3, bleu_4
except Exception as e:
return 0.0, 0.0, 0.0, 0.0
def calculate_code_metrics(reference, generated):
"""Calculate various code similarity metrics"""
try:
# Length ratio
len_ratio = len(generated) / max(len(reference), 1)
# Word overlap
ref_words = set(reference.lower().split())
gen_words = set(generated.lower().split())
if len(ref_words) > 0:
precision = len(ref_words.intersection(gen_words)) / len(gen_words) if len(gen_words) > 0 else 0
recall = len(ref_words.intersection(gen_words)) / len(ref_words)
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
else:
precision = recall = f1 = 0
# Character-level similarity
char_overlap = sum(1 for c in generated if c in reference) / max(len(generated), 1)
return {
'length_ratio': len_ratio,
'precision': precision,
'recall': recall,
'f1_score': f1,
'char_overlap': char_overlap
}
except Exception as e:
return {
'length_ratio': 0,
'precision': 0,
'recall': 0,
'f1_score': 0,
'char_overlap': 0
}
def format_python_code(code):
"""Format and clean generated code to be proper Python syntax with indentation"""
if not code or code.startswith('#'):
return code
try:
import re
# Remove special tokens and artifacts first
code = re.sub(r'<[^>]*>', '', code) # Remove all <TOKEN> patterns
code = code.replace('<TR>', '').strip() # Remove <TR> specifically
# Basic cleanup and conversion to Python
# Convert C++ function declarations to Python
code = re.sub(r'\b(?:bool|int|void|string|float|char|double)\s+(\w+)\s*\(([^)]*)\)\s*\{', r'def \1(\2):', code)
# Clean up parameter types in function signatures
code = re.sub(r'\(\s*(?:int|bool|string|float|char|double)\s+(\w+)\s*\)', r'(\1)', code)
code = re.sub(r',\s*(?:int|bool|string|float|char|double)\s+(\w+)', r', \1', code)
# Replace braces with proper Python structure
code = code.replace('{', ':')
code = code.replace('}', '')
# Remove semicolons
code = code.replace(';', '')
# Fix return statements
code = re.sub(r'return\s+true\b', 'return True', code)
code = re.sub(r'return\s+false\b', 'return False', code)
# Fix control structures
code = re.sub(r'\bif\s*\(([^)]+)\)', r'if \1:', code)
code = re.sub(r'\belse\s*:', r'else:', code)
code = re.sub(r'\belse\s+', r'else:\n ', code)
# Split into lines for indentation
lines = [line.strip() for line in code.split('\n') if line.strip()]
# Add proper indentation
formatted_lines = []
indent_level = 0
for line in lines:
# Handle dedent
if line.startswith('else:') or line.startswith('elif'):
indent_level = max(0, indent_level - 1)
# Add indentation
if indent_level > 0:
formatted_line = ' ' * indent_level + line
else:
formatted_line = line
formatted_lines.append(formatted_line)
# Handle indent after colon
if line.endswith(':'):
indent_level += 1
# Join lines
result = '\n'.join(formatted_lines)
# Final cleanup
result = re.sub(r'\n\s*\n+', '\n', result) # Remove empty lines
# Ensure we have something useful
if not result.strip() or 'def ' not in result:
# Create a basic function if parsing failed
result = f"def generated_function():\n # Model output: {code[:50]}...\n return None"
return result
except Exception as e:
# If formatting fails, return a basic structure with the original
return f"def generated_function():\n # Formatting error: {str(e)}\n # Original: {code[:100]}...\n return None"
def generate_code_from_pseudo(pseudo_code, max_length, temperature, top_k, top_p, num_sequences, reference_code):
"""Generate code from pseudo-code using loaded model"""
global loaded_model, loaded_tokenizer, generation_history
if loaded_model is None or loaded_tokenizer is None:
return "β Please upload and load a model first!", "", "", ""
if not pseudo_code.strip():
return "β Please enter pseudo-code description!", "", "", ""
try:
start_time = time.time()
# Format input with Python-specific instructions
prompt = f"<PSEUDO> {pseudo_code.strip()} <SEP> Write a Python function to {pseudo_code.strip()}. Use proper Python syntax with def, return statements, if/else conditions, and proper indentation. Example: def check_even_odd(number): if number % 2 == 0: return 'even' else: return 'odd' <CODE>"
# Tokenize with error handling
device = next(loaded_model.parameters()).device
try:
inputs = loaded_tokenizer(prompt, return_tensors='pt').to(device)
except Exception as tokenize_error:
# Try to fix tokenizer on the fly
try:
from transformers import GPT2Tokenizer
print("Fixing tokenizer compatibility...")
loaded_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
if loaded_tokenizer.pad_token_id is None:
loaded_tokenizer.pad_token_id = loaded_tokenizer.eos_token_id
inputs = loaded_tokenizer(prompt, return_tensors='pt').to(device)
except Exception as fix_error:
return f"β Tokenization failed: {tokenize_error}\nFix attempt failed: {fix_error}", "", "", ""
# Generate (ensure type safety for parameters)
with torch.no_grad():
try:
# Create generation kwargs with compatibility handling
generation_kwargs = {
'max_length': int(max_length),
'temperature': float(temperature),
'top_k': int(top_k),
'top_p': float(top_p),
'do_sample': True,
'num_return_sequences': int(num_sequences),
'pad_token_id': loaded_tokenizer.pad_token_id,
'eos_token_id': loaded_tokenizer.eos_token_id,
}
# Remove any None values that might cause issues
generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None}
# Add input_ids explicitly
generation_kwargs.update(inputs)
# Try generation with comprehensive error handling
try:
outputs = loaded_model.generate(**generation_kwargs)
except Exception as gen_error:
# First fallback: try without problematic parameters
if 'forced_decoder_ids' in str(gen_error) or 'GenerationConfig' in str(gen_error):
# Reset generation config to minimal safe version
if hasattr(loaded_model, 'generation_config'):
from transformers import GenerationConfig
loaded_model.generation_config = GenerationConfig(
pad_token_id=loaded_tokenizer.pad_token_id,
eos_token_id=loaded_tokenizer.eos_token_id,
do_sample=True
)
# Try again with minimal parameters
minimal_kwargs = {
'max_length': int(max_length),
'do_sample': True,
'temperature': float(temperature),
'pad_token_id': loaded_tokenizer.pad_token_id,
'eos_token_id': loaded_tokenizer.eos_token_id,
}
minimal_kwargs.update(inputs)
outputs = loaded_model.generate(**minimal_kwargs)
else:
raise gen_error
except Exception as generation_error:
return f"β Generation failed: {str(generation_error)}\n\nTry using default parameters or check model compatibility.", "", "", ""
generation_time = time.time() - start_time
# Decode all sequences with error handling
generated_codes = []
for i, output in enumerate(outputs):
try:
# Ensure output is valid tensor and contains valid token IDs
if output is None:
continue
# Convert to list and filter out None values
if hasattr(output, 'tolist'):
token_ids = output.tolist()
else:
token_ids = output
# Filter out None values and ensure all are integers
valid_tokens = []
for token in token_ids:
if token is not None and isinstance(token, (int, float)):
valid_tokens.append(int(token))
if not valid_tokens:
generated_codes.append(f"# Generation {i+1} failed: No valid tokens")
continue
# Decode with GPT-2 compatible handling
try:
# First attempt: standard decode with proper cleanup
generated = loaded_tokenizer.decode(valid_tokens, skip_special_tokens=False, clean_up_tokenization_spaces=True)
# GPT-2 specific: handle byte-level tokens properly
if generated is None:
raise ValueError("Tokenizer decode returned None")
# Clean up common GPT-2 artifacts - more aggressive cleaning
generated = generated.replace('Δ ', ' ').replace('β', ' ') # Handle different space tokens
generated = ' '.join(generated.split()) # Normalize whitespace
# Additional cleaning for common BPE artifacts
generated = generated.replace('<0x0A>', '\n').replace('<0x20>', ' ')
# Check for gibberish (too many special characters)
special_ratio = sum(1 for c in generated if not c.isalnum() and c not in ' \n\t.,;()[]{}+-*/=<>!&|^~%#@?:\'\"\\') / max(len(generated), 1)
if special_ratio > 0.7: # More than 70% special chars = likely gibberish
raise ValueError("Decoded output appears to be gibberish")
except Exception as decode_error:
# Second attempt: decode with skip_special_tokens=True
try:
generated = loaded_tokenizer.decode(valid_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True)
if generated is None:
raise ValueError("Tokenizer decode (skip_special) returned None")
# Clean up GPT-2 artifacts
generated = generated.replace('Δ ', ' ').replace('β', ' ')
generated = ' '.join(generated.split())
# Check for gibberish again
special_ratio = sum(1 for c in generated if not c.isalnum() and c not in ' \n\t.,;()[]{}+-*/=<>!&|^~%#@?:\'\"\\') / max(len(generated), 1)
if special_ratio > 0.7:
raise ValueError("Decoded output still appears to be gibberish")
except Exception as decode_error2:
# Third attempt: manual byte-level decoding for GPT-2
try:
# GPT-2 uses byte-level BPE, so we need to decode bytes properly
if hasattr(loaded_tokenizer, 'byte_decoder'):
# Use the tokenizer's byte decoder
byte_tokens = []
for token_id in valid_tokens:
if token_id in loaded_tokenizer.decoder:
token_bytes = loaded_tokenizer.decoder[token_id]
if isinstance(token_bytes, bytes):
byte_tokens.append(token_bytes)
elif isinstance(token_bytes, str):
byte_tokens.append(token_bytes.encode('utf-8', errors='ignore'))
if byte_tokens:
# Decode the byte sequence
full_bytes = b''.join(byte_tokens)
generated = full_bytes.decode('utf-8', errors='replace')
# Clean up
generated = generated.replace('Δ ', ' ').replace('β', ' ')
generated = ' '.join(generated.split())
if not generated or generated.isspace():
raise ValueError("Byte decoding produced empty result")
else:
raise ValueError("No valid byte tokens found")
else:
raise ValueError("Tokenizer has no byte_decoder")
except Exception as byte_error:
# Fourth attempt: fallback to vocab-based conversion
try:
if hasattr(loaded_tokenizer, 'get_vocab'):
vocab = loaded_tokenizer.get_vocab()
# Convert tokens, handling byte-level tokens
text_parts = []
for token_id in valid_tokens:
if token_id in vocab:
token_text = vocab[token_id]
# Handle byte-level tokens (start with Δ or β)
if token_text.startswith('Δ '):
text_parts.append(' ' + token_text[1:])
elif token_text.startswith('β'):
text_parts.append(' ' + token_text[1:])
else:
text_parts.append(token_text)
generated = ''.join(text_parts)
generated = ' '.join(generated.split()) # Clean whitespace
if not generated or generated.isspace():
raise ValueError("Vocab conversion produced empty result")
else:
raise ValueError("Tokenizer has no get_vocab method")
except Exception as vocab_error:
# Final fallback: show what we have
generated = f"# Decode failed: {str(decode_error)}\n# Byte decode failed: {str(byte_error)}\n# Vocab decode failed: {str(vocab_error)}\n# Raw tokens: {valid_tokens[:10]}..."
# Final safety check
if not isinstance(generated, str):
generated = str(generated) if generated is not None else "# Decode returned non-string object"
# Handle None result from decode
if generated is None:
generated = f"# Generation {i+1}: Decode returned None"
# Extract code part with safety checks
try:
if '<CODE>' in generated:
code_parts = generated.split('<CODE>')
if len(code_parts) > 1:
code = code_parts[-1].strip()
else:
code = generated.strip()
else:
code = generated.strip()
# Remove special tokens safely
special_tokens = ['<PAD>', '<SEP>', '</s>', '<s>', '<unk>', '<mask>', '<|endoftext|>']
for token in special_tokens:
code = code.replace(token, '')
# Clean up extra whitespace but preserve some structure
code = code.replace('\n\n\n', '\n\n') # Reduce excessive newlines
# For debugging: include raw generated code
raw_code = generated.strip()
formatted_code = format_python_code(code)
# Show both raw and formatted for transparency
if not formatted_code.startswith('#'):
code = f"# Model Generated (Raw):\n# {raw_code[:100]}...\n\n# Formatted Python Code:\n{formatted_code}"
else:
code = formatted_code
# Ensure we have some content
if not code or code.isspace():
code = f"# Generated sequence {i+1} was empty after cleaning"
except Exception as extract_error:
code = f"# Error extracting code from sequence {i+1}: {str(extract_error)}"
# Final validation: ensure code is meaningful
try:
# Check if code contains at least some alphanumeric characters or code keywords
has_alnum = any(c.isalnum() for c in code)
has_code_indicators = any(keyword in code.lower() for keyword in ['def ', 'class ', 'import ', 'if ', 'for ', 'while ', 'return ', 'print(', 'bool', 'int', 'str', 'list'])
if not has_alnum and not has_code_indicators:
code = f"# Generated sequence {i+1} contains no readable content"
elif len(code) < 5: # Too short to be meaningful
code = f"# Generated sequence {i+1} too short: {code}"
elif code.count('#') > len(code) * 0.8: # Mostly error messages
code = f"# Generated sequence {i+1} mostly errors: {code[:50]}..."
else:
# Looks good, keep as is
pass
except Exception as validation_error:
code = f"# Validation error for sequence {i+1}: {str(validation_error)}"
generated_codes.append(code)
except Exception as decode_error:
# Handle any other decoding errors
error_msg = f"# Error decoding sequence {i+1}: {str(decode_error)}"
generated_codes.append(error_msg)
# Ensure we have at least one result
if not generated_codes:
generated_codes = ["# No valid generations produced - check model and tokenizer compatibility"]
# Log generation summary for debugging
valid_generations = [code for code in generated_codes if not code.startswith('#')]
error_generations = [code for code in generated_codes if code.startswith('#')]
if error_generations:
print(f"Generation completed: {len(valid_generations)} valid, {len(error_generations)} errors")
for error in error_generations[:3]: # Log first 3 errors
print(f" Error: {error[:100]}...")
# Use the first generated code as primary output
primary_code = generated_codes[0] if generated_codes else "# No code generated"
# Calculate metrics if reference code is provided
metrics_output = ""
bleu_output = ""
if reference_code and reference_code.strip() and not primary_code.startswith('#'):
# Only calculate metrics if we have valid generated code (not error messages)
try:
# Calculate BLEU scores
bleu_1, bleu_2, bleu_3, bleu_4 = calculate_bleu_score(reference_code, primary_code)
bleu_output = f"""π BLEU Scores:
ββββββββββββββββββββββββββββββββββββββββ
β’ BLEU-1 (Unigram): {bleu_1:.4f} ({bleu_1*100:.2f}%)
β’ BLEU-2 (Bigram): {bleu_2:.4f} ({bleu_2*100:.2f}%)
β’ BLEU-3 (Trigram): {bleu_3:.4f} ({bleu_3*100:.2f}%)
β’ BLEU-4 (4-gram): {bleu_4:.4f} ({bleu_4*100:.2f}%)
ββββββββββββββββββββββββββββββββββββββββ
π‘ Interpretation:
β’ BLEU > 0.4: Excellent match
β’ BLEU 0.3-0.4: Good match
β’ BLEU 0.2-0.3: Fair match
β’ BLEU < 0.2: Poor match
"""
# Calculate additional metrics
code_metrics = calculate_code_metrics(reference_code, primary_code)
metrics_output = f"""π Additional Metrics:
ββββββββββββββββββββββββββββββββββββββββ
β’ Length Ratio: {code_metrics['length_ratio']:.3f}
β’ Precision: {code_metrics['precision']:.4f} ({code_metrics['precision']*100:.2f}%)
β’ Recall: {code_metrics['recall']:.4f} ({code_metrics['recall']*100:.2f}%)
β’ F1-Score: {code_metrics['f1_score']:.4f} ({code_metrics['f1_score']*100:.2f}%)
β’ Character Overlap: {code_metrics['char_overlap']:.4f} ({code_metrics['char_overlap']*100:.2f}%)
ββββββββββββββββββββββββββββββββββββββββ
β±οΈ Generation Time: {generation_time:.2f}s
π Sequences Generated: {num_sequences}
π’ Output Length: {len(primary_code)} characters
ββββββββββββββββββββββββββββββββββββββββ
"""
except Exception as metrics_error:
metrics_output = f"""β οΈ Metrics calculation failed: {str(metrics_error)}
β±οΈ Generation Time: {generation_time:.2f}s
π Sequences Generated: {num_sequences}
π’ Output Length: {len(primary_code)} characters
"""
else:
metrics_output = f"""β±οΈ Generation Time: {generation_time:.2f}s
π Sequences Generated: {num_sequences}
π’ Output Length: {len(primary_code)} characters
π‘ Tip: Provide reference code to see BLEU scores and similarity metrics!
"""
# Format alternative sequences
alternatives = ""
if num_sequences > 1 and len(generated_codes) > 1:
alternatives = "π Alternative Generations:\n" + "β"*50 + "\n\n"
for i, code in enumerate(generated_codes[1:], 2):
# Skip error messages in alternatives
if not code.startswith('#'):
alternatives += f"Variation {i}:\n```python\n{code}\n```\n\n"
else:
alternatives += f"Variation {i}: {code}\n\n"
# Add to history (only if primary code is not an error message)
if not primary_code.startswith('#'):
generation_history.append({
'pseudo': pseudo_code,
'generated': primary_code,
'bleu_4': bleu_4 if reference_code and not primary_code.startswith('#') else None,
'time': generation_time
})
return primary_code, metrics_output, bleu_output, alternatives
except Exception as e:
return f"β Error generating code: {str(e)}", "", "", ""
def show_examples(example_name):
"""Load example pseudo-code"""
examples = {
"Basic Loop": "create a list of numbers from 1 to 10",
"Function Definition": "define a function to calculate the sum of two numbers",
"List Iteration": "iterate through a list and print each element",
"Conditional Check": "check if a number is even or odd",
"Sorting": "sort a list in descending order",
"Maximum Element": "create a function to find maximum element in array",
"Binary Search": "implement binary search algorithm",
"Factorial": "create a recursive function to calculate factorial",
"Palindrome": "check if a string is palindrome",
"Fibonacci": "generate fibonacci sequence up to n terms"
}
return examples.get(example_name, "")
def clear_all():
"""Clear all inputs and outputs"""
return "", "", "", "", "", 150, 0.7, 50, 0.95, 1
def show_history():
"""Display generation history"""
if not generation_history:
return "No generation history yet. Start generating code!"
history_text = "π Generation History:\n" + "="*60 + "\n\n"
for i, entry in enumerate(reversed(generation_history[-10:]), 1): # Show last 10
history_text += f"{i}. Pseudo: {entry['pseudo'][:60]}...\n"
history_text += f" Time: {entry['time']:.2f}s"
if entry['bleu_4'] is not None:
history_text += f" | BLEU-4: {entry['bleu_4']:.4f}"
history_text += f"\n Code: {entry['generated'][:80]}...\n\n"
return history_text
# Create Gradio interface with custom CSS
custom_css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.output-code {
font-family: 'Courier New', monospace;
font-size: 14px;
}
.metrics-box {
background-color: #f0f8ff;
border-radius: 8px;
padding: 10px;
}
"""
with gr.Blocks(title="π GPT-2 Pseudo-Code to Code Generator", theme=gr.themes.Soft(), css=custom_css) as demo:
gr.Markdown("""
# π GPT-2 Pseudo-Code to Python Code Generator
**Transform natural language descriptions into executable Python code using fine-tuned GPT-2!**
This model is trained on the SPOC (Search-based Pseudo-code to Code) dataset and can generate Python code from pseudo-code descriptions.
""")
with gr.Tabs():
# Tab 1: Code Generation
with gr.Tab("π» Code Generation"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### οΏ½ Model Status")
model_status = gr.Textbox(
label="Model Information",
lines=15,
interactive=False,
value=initialize_model() # Auto-load on startup
)
gr.Markdown("---")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### βοΈ Enter Pseudo-Code")
# Example selector
with gr.Row():
example_dropdown = gr.Dropdown(
choices=["Basic Loop", "Function Definition", "List Iteration",
"Conditional Check", "Sorting", "Maximum Element",
"Binary Search", "Factorial", "Palindrome", "Fibonacci"],
label="π Load Example",
value=None
)
pseudo_input = gr.Textbox(
label="Pseudo-Code Description",
placeholder="Example: create a function to calculate factorial of a number",
lines=4
)
reference_code = gr.Textbox(
label="Reference Code (Optional - for BLEU score calculation)",
placeholder="Paste reference code here to calculate BLEU scores...",
lines=4
)
gr.Markdown("### βοΈ Generation Parameters")
with gr.Row():
max_length = gr.Slider(
minimum=50,
maximum=500,
value=150,
step=10,
label="Max Length",
info="Maximum tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=1.5,
value=0.7,
step=0.1,
label="Temperature",
info="Higher = more creative"
)
with gr.Row():
top_k = gr.Slider(
minimum=10,
maximum=100,
value=50,
step=5,
label="Top-K",
info="Vocabulary filtering"
)
top_p = gr.Slider(
minimum=0.5,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
info="Nucleus sampling"
)
num_sequences = gr.Slider(
minimum=1,
maximum=5,
value=1,
step=1,
label="Number of Variations",
info="Generate multiple versions"
)
with gr.Row():
generate_btn = gr.Button("β¨ Generate Code", variant="primary", size="lg")
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
with gr.Column(scale=1):
gr.Markdown("### π» Generated Python Code")
code_output = gr.Code(
label="Generated Code",
language="python",
lines=12,
elem_classes="output-code"
)
with gr.Row():
with gr.Column():
metrics_output = gr.Textbox(
label="π Performance Metrics",
lines=8,
interactive=False,
elem_classes="metrics-box"
)
with gr.Column():
bleu_output = gr.Textbox(
label="π― BLEU Scores",
lines=8,
interactive=False,
elem_classes="metrics-box"
)
alternatives_output = gr.Markdown(
label="π Alternative Generations"
)
# Tab 2: Information & Guide
with gr.Tab("π Guide & Examples"):
gr.Markdown("""
## π How to Use
### 1οΈβ£ Load Your Model
- Upload the `best_model.pkl` file (trained GPT-2 model)
- Click "Load Model" and wait for confirmation
- You'll see model configuration and training metrics
### 2οΈβ£ Generate Code
- **Quick Start**: Select an example from the dropdown
- **Custom Input**: Type your own pseudo-code description
- **Optional**: Add reference code to calculate BLEU scores
- Adjust generation parameters for different outputs
- Click "Generate Code"
### 3οΈβ£ Understand the Metrics
#### π― BLEU Score (Bilingual Evaluation Understudy)
- Measures similarity between generated and reference code
- **BLEU-1**: Word-level similarity (unigrams)
- **BLEU-2**: 2-word phrase similarity (bigrams)
- **BLEU-3**: 3-word phrase similarity (trigrams)
- **BLEU-4**: 4-word phrase similarity (most comprehensive)
**Score Interpretation:**
- π’ **> 0.4**: Excellent match - Generated code is very similar to reference
- π‘ **0.3-0.4**: Good match - Code captures most key elements
- π **0.2-0.3**: Fair match - Some similarity exists
- π΄ **< 0.2**: Poor match - Significant differences
#### π Additional Metrics
- **Precision**: How many generated words appear in reference
- **Recall**: How many reference words appear in generated code
- **F1-Score**: Harmonic mean of precision and recall
- **Length Ratio**: Generated vs reference code length
- **Character Overlap**: Character-level similarity
### ποΈ Generation Parameters
| Parameter | Low Value | High Value | Use Case |
|-----------|-----------|------------|----------|
| **Temperature** | 0.1-0.3 | 0.8-1.2 | Low: Deterministic, focused<br>High: Creative, diverse |
| **Top-K** | 10-30 | 60-100 | Low: Conservative choices<br>High: More variety |
| **Top-P** | 0.5-0.8 | 0.9-1.0 | Low: Safe predictions<br>High: Exploratory |
| **Max Length** | 50-100 | 200-500 | Short: Simple code<br>Long: Complex implementations |
---
## π‘ Example Pseudo-Code Prompts
### Basic Operations
```
create a list of numbers from 1 to 10
define a function to calculate the sum of two numbers
iterate through a list and print each element
```
### Conditionals & Logic
```
check if a number is even or odd
find the maximum of three numbers
validate if a string is empty
```
### Data Structures
```
sort a list in descending order
remove duplicates from a list
merge two dictionaries
```
### Algorithms
```
implement binary search algorithm
create a recursive function to calculate factorial
generate fibonacci sequence up to n terms
check if a string is palindrome
```
### Advanced
```
create a class to represent a student with name and grades
implement a function to read CSV file and return dataframe
create a decorator to measure function execution time
```
---
## π About the Model
This model is fine-tuned on the **SPOC (Search-based Pseudo-code to Code)** dataset:
- π Paper: [SPOC: Search-based Pseudo-code to Code](https://arxiv.org/pdf/1906.04908)
- ποΈ Source: Stanford University
- π€ Base Model: GPT-2 (Decoder-Only Transformer)
- π Training: 10,000+ pseudo-code to code pairs
- π― Task: Causal Language Modeling
---
## β οΈ Limitations
- Model may not handle very complex algorithms perfectly
- Generated code should be tested before production use
- Best results with clear, specific pseudo-code descriptions
- Model trained on C++ code, adapted for Python generation
---
## π€ Tips for Best Results
1. β
**Be Specific**: "create a function to sort list in ascending order" vs "sort list"
2. β
**Use Action Words**: "create", "define", "implement", "calculate"
3. β
**Mention Data Types**: "list", "string", "dictionary", "integer"
4. β
**Include Details**: "recursive function" vs just "function"
5. β
**Try Variations**: Generate multiple times with different temperatures
""")
# Tab 3: History
with gr.Tab("π History"):
gr.Markdown("## π Generation History")
history_display = gr.Textbox(
label="Recent Generations",
lines=20,
interactive=False
)
refresh_history_btn = gr.Button("π Refresh History", variant="secondary")
gr.Markdown("""
---
### π Features
- β
Upload and use custom trained models
- β
BLEU score calculation for quality assessment
- β
Multiple evaluation metrics (Precision, Recall, F1)
- β
Generate multiple code variations
- β
Real-time performance tracking
- β
Example prompts library
- β
Generation history
### π Citation
If you use this model, please cite:
```
@article{kulal2019spoc,
title={SPOC: Search-based Pseudo-code to Code},
author={Kulal, Sumith and Pasupat, Panupong and Chandra, Kartik and Lee, Mina and Padon, Oded and Aiken, Alex and Liang, Percy},
journal={arXiv preprint arXiv:1906.04908},
year={2019}
}
```
**Built with β€οΈ using HuggingFace Transformers & Gradio**
""")
# Event handlers
example_dropdown.change(
fn=show_examples,
inputs=[example_dropdown],
outputs=[pseudo_input]
)
generate_btn.click(
fn=generate_code_from_pseudo,
inputs=[pseudo_input, max_length, temperature, top_k, top_p, num_sequences, reference_code],
outputs=[code_output, metrics_output, bleu_output, alternatives_output]
)
clear_btn.click(
fn=clear_all,
inputs=[],
outputs=[pseudo_input, reference_code, code_output, metrics_output, bleu_output,
max_length, temperature, top_k, top_p, num_sequences]
)
refresh_history_btn.click(
fn=show_history,
inputs=[],
outputs=[history_display]
)
# Launch the interface
if __name__ == "__main__":
demo.launch(share=False)
|