LayoutLM_train / HF_LayoutLM_with_Passage.py
heerjtdev's picture
Update HF_LayoutLM_with_Passage.py
4fc6352 verified
import json
import argparse
import os
import random
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
# Using LayoutLMv3TokenizerFast, LayoutLMv3Model
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
from transformers.utils import cached_file
from safetensors.torch import load_file
from TorchCRF import CRF
from torch.optim import AdamW
from tqdm import tqdm
from sklearn.metrics import precision_recall_fscore_support
# --- Configuration for Augmentation ---
MAX_BBOX_DIMENSION = 1000 # Corrected to 1000 to match LayoutLMv3 requirement
MAX_SHIFT = 30
AUGMENTATION_FACTOR = 1
# -------------------------------------
# --- Hugging Face Model ID ---
HF_MODEL_ID = "heerjtdev/edugenius"
# -----------------------------
# -------------------------
# Step 1: Preprocessing (Label Studio β†’ BIO + bboxes)
# -------------------------
def preprocess_labelstudio(input_path, output_path):
with open(input_path, "r", encoding="utf-8") as f:
data = json.load(f)
processed = []
total_items = len(data) # Added for potential verbose logging
print(f"πŸ”„ Starting preprocessing of {total_items} documents My name is Aastik!! BOOBS...")
for item in data:
words = item["data"]["original_words"]
bboxes = item["data"]["original_bboxes"]
labels = ["O"] * len(words)
# --- NEW: Bounding Box Normalization/Clamping ---
# Defensively ensures all coordinates are within the [0, 1000] range
# required by LayoutLMv3's spatial position embeddings.
clamped_bboxes = []
for bbox in bboxes:
# Clamp coordinates to [0, 1000]
x_min, y_min, x_max, y_max = bbox
new_x_min = max(0, min(x_min, 1000))
new_y_min = max(0, min(y_min, 1000))
new_x_max = max(0, min(x_max, 1000))
new_y_max = max(0, min(y_max, 1000))
# Safety check: ensure min <= max (this should rarely trigger
# if the original bboxes were valid, but is good practice)
if new_x_min > new_x_max: new_x_min = new_x_max
if new_y_min > new_y_max: new_y_min = new_y_max
clamped_bboxes.append([new_x_min, new_y_min, new_x_max, new_y_max])
# Use the clamped bboxes for the rest of the pipeline
final_bboxes = clamped_bboxes
# ------------------------------------------------
if "annotations" in item:
for ann in item["annotations"]:
for res in ann["result"]:
# Check if the result item is a span annotation
if "value" in res and "labels" in res["value"]:
text = res["value"]["text"]
tag = res["value"]["labels"][0]
# Some tokenizers may split words, so we must find a consecutive word match.
text_tokens = text.split()
for i in range(len(words) - len(text_tokens) + 1):
if words[i:i + len(text_tokens)] == text_tokens:
labels[i] = f"B-{tag}"
for j in range(1, len(text_tokens)):
labels[i + j] = f"I-{tag}"
break # Move to next annotation if a match is found
processed.append({"tokens": words, "labels": labels, "bboxes": final_bboxes})
with open(output_path, "w", encoding="utf-8") as f:
json.dump(processed, f, indent=2, ensure_ascii=False)
print(f"βœ… Preprocessed data saved to {output_path}")
return output_path
# -------------------------
# Step 1.5: Bounding Box Augmentation
# -------------------------
def translate_bbox(bbox, shift_x, shift_y):
"""
Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
"""
x_min, y_min, x_max, y_max = bbox
new_x_min = x_min + shift_x
new_y_min = y_min + shift_y
new_x_max = x_max + shift_x
new_y_max = y_max + shift_y
# Clamp the new coordinates (MAX_BBOX_DIMENSION is 1000)
new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
# Safety check
if new_x_min > new_x_max: new_x_min = new_x_max
if new_y_min > new_y_max: new_y_min = new_y_max
return [new_x_min, new_y_min, new_x_max, new_y_max]
def augment_sample(sample):
"""
Generates a new sample by translating all bounding boxes.
"""
shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
new_sample = sample.copy()
# Ensure tokens and labels are copied (they remain unchanged)
new_sample["tokens"] = sample["tokens"]
new_sample["labels"] = sample["labels"]
# Translate all bounding boxes
new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
new_sample["bboxes"] = new_bboxes
return new_sample
def augment_and_save_dataset(input_json_path, output_json_path):
"""
Loads preprocessed data, performs augmentation, and saves the result.
"""
print(f"πŸ”„ Loading preprocessed data from {input_json_path} for augmentation...")
with open(input_json_path, 'r', encoding="utf-8") as f:
training_data = json.load(f)
augmented_data = []
original_count = len(training_data)
print(f"πŸ”„ Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
for i, original_sample in enumerate(training_data):
# 1. Add the original sample
augmented_data.append(original_sample)
# 2. Generate augmented samples
for _ in range(AUGMENTATION_FACTOR):
if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
augmented_data.append(augment_sample(original_sample))
else:
print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
augmented_count = len(augmented_data)
print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
# Save the augmented dataset
with open(output_json_path, 'w', encoding="utf-8") as f:
json.dump(augmented_data, f, indent=2, ensure_ascii=False)
print(f"βœ… Augmented data saved to {output_json_path}")
return output_json_path
# -------------------------
# Step 2: Dataset Class
# -------------------------
class LayoutDataset(Dataset):
def __init__(self, json_path, tokenizer, label2id, max_len=512):
with open(json_path, "r", encoding="utf-8") as f:
self.data = json.load(f)
self.tokenizer = tokenizer
self.label2id = label2id
self.max_len = max_len
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
# Tokenize
encodings = self.tokenizer(
words,
boxes=bboxes,
padding="max_length",
truncation=True,
max_length=self.max_len,
return_offsets_mapping=True,
return_tensors="pt"
)
# Align labels to word pieces
word_ids = encodings.word_ids(batch_index=0)
label_ids = []
for word_id in word_ids:
if word_id is None:
label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
else:
label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
encodings.pop("offset_mapping")
encodings["labels"] = torch.tensor(label_ids)
return {key: val.squeeze(0) for key, val in encodings.items()}
# -------------------------
# Step 3: Model Architecture (PATCHED TO LOAD WEIGHTS CORRECTLY)
# -------------------------
class LayoutLMv3CRF(nn.Module):
def __init__(self, model_name, num_labels, device):
super().__init__()
# 1. Initialize the LayoutLMv3 model using the base class
# We start by initializing from the base configuration to ensure all weights are present
self.layoutlm = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base")
# 2. Try to load the fine-tuned weights from the Hugging Face Hub/Cache
try:
# This resolves the path to the downloaded model.safetensors in the cache
# Assumes you have renamed your file on the Hugging Face Hub to 'model.safetensors'
weights_path = cached_file(model_name, "model.safetensors")
fine_tuned_weights = load_file(weights_path)
# 3. Strip the Mismatching Prefix (Assuming 'layoutlm.' prefix from a previous wrapper)
new_state_dict = {}
prefix_to_strip = "layoutlm."
for key, value in fine_tuned_weights.items():
if key.startswith(prefix_to_strip):
new_key = key[len(prefix_to_strip):]
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
# 4. Load the fixed state dictionary into the LayoutLMv3Model
# strict=False allows us to ignore classifier/CRF weights not in LayoutLMv3Model
print("πŸ”„ Successfully loaded and stripped keys. Loading base LayoutLMv3 weights...")
# Load only the weights for the transformer body
missing_keys, unexpected_keys = self.layoutlm.load_state_dict(new_state_dict, strict=False)
print(f"Weights loading done: {len(missing_keys)} missing, {len(unexpected_keys)} unexpected keys.")
except Exception as e:
print(f"❌ Fine-tuned weights could not be loaded directly and mapped. Starting with random weights.")
print(f"Error: {e}")
# Fallback: Load the LayoutLMv3 component directly from the Hub ID (will result in random weights for layers)
self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
# 5. Initialize the new heads (CRF layer and Classifier)
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
self.crf = CRF(num_labels)
def forward(self, input_ids, bbox, attention_mask, labels=None):
outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
sequence_output = self.dropout(outputs.last_hidden_state)
emissions = self.classifier(sequence_output)
if labels is not None:
# Training mode: calculate loss
log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
return -log_likelihood.mean()
else:
# Inference mode: decode best path
best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
return best_paths
# -------------------------
# Step 4: Training + Evaluation
# -------------------------
def train_one_epoch(model, dataloader, optimizer, device):
model.train()
total_loss = 0
for batch in tqdm(dataloader, desc="Training"):
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch.pop("labels")
optimizer.zero_grad()
loss = model(**batch, labels=labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(dataloader)
def evaluate(model, dataloader, device, id2label):
model.eval()
all_preds, all_labels = [], []
with torch.no_grad():
for batch in tqdm(dataloader, desc="Evaluating"):
batch = {k: v.to(device) for k, v in batch.items()}
labels = batch.pop("labels").cpu().numpy()
# The model returns a list of lists of predicted labels in inference mode
preds = model(**batch)
for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
valid = mask == 1
l = l[valid].tolist()
all_labels.extend(l)
# Ensure pred length matches label length for the unmasked tokens
all_preds.extend(p[:len(l)])
# Exclude the "O" label and other special tokens if necessary, but using 'micro' average
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
return precision, recall, f1
# -------------------------
# Step 5: Main Pipeline (Training) - MODIFIED MODEL/TOKENIZER LOADING
# -------------------------
def main(args):
# LABELS UPDATED: Added SECTION_HEADING and PASSAGE
labels = [
"O",
"B-QUESTION", "I-QUESTION",
"B-OPTION", "I-OPTION",
"B-ANSWER", "I-ANSWER",
"B-SECTION_HEADING", "I-SECTION_HEADING",
"B-PASSAGE", "I-PASSAGE"
]
label2id = {l: i for i, l in enumerate(labels)}
id2label = {i: l for l, i in label2id.items()}
# --- SETUP: Use a temporary directory for intermediate files ---
TEMP_DIR = "temp_intermediate_files"
os.makedirs(TEMP_DIR, exist_ok=True)
print(f"\n--- SETUP PHASE: Created temp directory: {TEMP_DIR} ---")
# 1. Preprocess
print("\n--- START PHASE: PREPROCESSING ---")
initial_bio_json = os.path.join(TEMP_DIR, "training_data_bio_bboxes.json")
preprocess_labelstudio(args.input, initial_bio_json)
# 2. Augment
print("\n--- START PHASE: AUGMENTATION ---")
augmented_bio_json = os.path.join(TEMP_DIR, "augmented_training_data_bio_bboxes.json")
final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
# 3. Load and split augmented dataset
print("\n--- START PHASE: MODEL/DATASET SETUP ---")
# Load tokenizer from the specified Hugging Face ID
tokenizer = LayoutLMv3TokenizerFast.from_pretrained(HF_MODEL_ID)
dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
val_size = int(0.2 * len(dataset))
train_size = len(dataset) - val_size
# Use a fixed seed for reproducibility in split
torch.manual_seed(42)
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
# 4. Initialize and load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Pass the Hugging Face ID and device to the custom model wrapper
model = LayoutLMv3CRF(HF_MODEL_ID, num_labels=len(labels), device=device).to(device)
ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
os.makedirs("checkpoints", exist_ok=True)
if os.path.exists(ckpt_path):
print(f"⚠️ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
optimizer = AdamW(model.parameters(), lr=args.lr)
# 5. Training loop
for epoch in range(args.epochs):
print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
avg_loss = train_one_epoch(model, train_loader, optimizer, device)
print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
precision, recall, f1 = evaluate(model, val_loader, device, id2label)
print(
f"Epoch {epoch + 1}/{args.epochs} | Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
torch.save(model.state_dict(), ckpt_path)
print(f"πŸ’Ύ Model saved at {ckpt_path}")
# -------------------------
# Step 7: Main Execution
# -------------------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
help="Select mode: 'train' or 'infer'")
parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--epochs", type=int, default=5)
parser.add_argument("--lr", type=float, default=5e-5)
parser.add_argument("--max_len", type=int, default=512)
args = parser.parse_args()
if args.mode == "train":
if not args.input:
parser.error("--input is required for 'train' mode.")
main(args)