Spaces:
Running
Running
Commit
Β·
ad55aeb
1
Parent(s):
dc56cce
app.py
Browse files- HF_LayoutLM_with_Passage.py +484 -0
HF_LayoutLM_with_Passage.py
ADDED
|
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import argparse
|
| 3 |
+
import os
|
| 4 |
+
import random
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from torch.utils.data import Dataset, DataLoader, random_split
|
| 9 |
+
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
|
| 10 |
+
from TorchCRF import CRF
|
| 11 |
+
from torch.optim import AdamW
|
| 12 |
+
from tqdm import tqdm # Keep for evaluate
|
| 13 |
+
from sklearn.metrics import precision_recall_fscore_support
|
| 14 |
+
import fitz # PyMuPDF
|
| 15 |
+
import pytesseract
|
| 16 |
+
from PIL import Image
|
| 17 |
+
from pdf2image import convert_from_path
|
| 18 |
+
|
| 19 |
+
# --- Configuration for Augmentation ---
|
| 20 |
+
MAX_BBOX_DIMENSION = 999
|
| 21 |
+
MAX_SHIFT = 30
|
| 22 |
+
AUGMENTATION_FACTOR = 1
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# -------------------------------------
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# -------------------------
|
| 29 |
+
# Step 1: Preprocessing (Label Studio β BIO + bboxes)
|
| 30 |
+
# -------------------------
|
| 31 |
+
def preprocess_labelstudio(input_path, output_path):
|
| 32 |
+
with open(input_path, "r", encoding="utf-8") as f:
|
| 33 |
+
data = json.load(f)
|
| 34 |
+
|
| 35 |
+
processed = []
|
| 36 |
+
total_items = len(data)
|
| 37 |
+
print(f"π Starting preprocessing of {total_items} documents...")
|
| 38 |
+
|
| 39 |
+
for i, item in enumerate(data):
|
| 40 |
+
words = item["data"]["original_words"]
|
| 41 |
+
bboxes = item["data"]["original_bboxes"]
|
| 42 |
+
labels = ["O"] * len(words)
|
| 43 |
+
|
| 44 |
+
if "annotations" in item:
|
| 45 |
+
for ann in item["annotations"]:
|
| 46 |
+
for res in ann["result"]:
|
| 47 |
+
# Check if the result item is a span annotation
|
| 48 |
+
if "value" in res and "labels" in res["value"]:
|
| 49 |
+
text = res["value"]["text"]
|
| 50 |
+
tag = res["value"]["labels"][0]
|
| 51 |
+
# Some tokenizers may split words, so we must find a consecutive word match.
|
| 52 |
+
text_tokens = text.split()
|
| 53 |
+
|
| 54 |
+
for j in range(len(words) - len(text_tokens) + 1):
|
| 55 |
+
if words[j:j + len(text_tokens)] == text_tokens:
|
| 56 |
+
labels[j] = f"B-{tag}"
|
| 57 |
+
for k in range(1, len(text_tokens)):
|
| 58 |
+
labels[j + k] = f"I-{tag}"
|
| 59 |
+
break # Move to next annotation if a match is found
|
| 60 |
+
|
| 61 |
+
processed.append({"tokens": words, "labels": labels, "bboxes": bboxes})
|
| 62 |
+
|
| 63 |
+
# --- HEARTBEAT LOGGING ---
|
| 64 |
+
if (i + 1) % 50 == 0:
|
| 65 |
+
print(f"--- HEARTBEAT: Preprocessed {i + 1}/{total_items} documents ---")
|
| 66 |
+
# -------------------------
|
| 67 |
+
|
| 68 |
+
print(f"β
Preprocessed data saved to {output_path}")
|
| 69 |
+
return output_path
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# -------------------------
|
| 73 |
+
# Step 1.5: Bounding Box Augmentation
|
| 74 |
+
# -------------------------
|
| 75 |
+
|
| 76 |
+
def translate_bbox(bbox, shift_x, shift_y):
|
| 77 |
+
"""
|
| 78 |
+
Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
|
| 79 |
+
and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
|
| 80 |
+
"""
|
| 81 |
+
x_min, y_min, x_max, y_max = bbox
|
| 82 |
+
|
| 83 |
+
new_x_min = x_min + shift_x
|
| 84 |
+
new_y_min = y_min + shift_y
|
| 85 |
+
new_x_max = x_max + shift_x
|
| 86 |
+
new_y_max = y_max + shift_y
|
| 87 |
+
|
| 88 |
+
# Clamp the new coordinates
|
| 89 |
+
new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
|
| 90 |
+
new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
|
| 91 |
+
new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
|
| 92 |
+
new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
|
| 93 |
+
|
| 94 |
+
# Safety check
|
| 95 |
+
if new_x_min > new_x_max: new_x_min = new_x_max
|
| 96 |
+
if new_y_min > new_y_max: new_y_min = new_y_max
|
| 97 |
+
|
| 98 |
+
return [new_x_min, new_y_min, new_x_max, new_y_max]
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def augment_sample(sample):
|
| 102 |
+
"""
|
| 103 |
+
Generates a new sample by translating all bounding boxes.
|
| 104 |
+
"""
|
| 105 |
+
shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
|
| 106 |
+
shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
|
| 107 |
+
|
| 108 |
+
new_sample = sample.copy()
|
| 109 |
+
|
| 110 |
+
# Ensure tokens and labels are copied (they remain unchanged)
|
| 111 |
+
new_sample["tokens"] = sample["tokens"]
|
| 112 |
+
new_sample["labels"] = sample["labels"]
|
| 113 |
+
|
| 114 |
+
# Translate all bounding boxes
|
| 115 |
+
new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
|
| 116 |
+
new_sample["bboxes"] = new_bboxes
|
| 117 |
+
|
| 118 |
+
return new_sample
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def augment_and_save_dataset(input_json_path, output_json_path):
|
| 122 |
+
"""
|
| 123 |
+
Loads preprocessed data, performs augmentation, and saves the result.
|
| 124 |
+
"""
|
| 125 |
+
print(f"π Loading preprocessed data from {input_json_path} for augmentation...")
|
| 126 |
+
with open(input_json_path, 'r', encoding="utf-8") as f:
|
| 127 |
+
training_data = json.load(f)
|
| 128 |
+
|
| 129 |
+
augmented_data = []
|
| 130 |
+
original_count = len(training_data)
|
| 131 |
+
|
| 132 |
+
print(f"π Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
|
| 133 |
+
|
| 134 |
+
for i, original_sample in enumerate(training_data):
|
| 135 |
+
# 1. Add the original sample
|
| 136 |
+
augmented_data.append(original_sample)
|
| 137 |
+
|
| 138 |
+
# 2. Generate augmented samples
|
| 139 |
+
for _ in range(AUGMENTATION_FACTOR):
|
| 140 |
+
if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
|
| 141 |
+
augmented_data.append(augment_sample(original_sample))
|
| 142 |
+
else:
|
| 143 |
+
print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
|
| 144 |
+
|
| 145 |
+
# --- HEARTBEAT LOGGING ---
|
| 146 |
+
if (i + 1) % 50 == 0:
|
| 147 |
+
print(f"--- HEARTBEAT: Augmented {i + 1}/{original_count} original documents ---")
|
| 148 |
+
# -------------------------
|
| 149 |
+
|
| 150 |
+
augmented_count = len(augmented_data)
|
| 151 |
+
print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
|
| 152 |
+
|
| 153 |
+
# Save the augmented dataset
|
| 154 |
+
with open(output_json_path, 'w', encoding="utf-8") as f:
|
| 155 |
+
json.dump(augmented_data, f, indent=2, ensure_ascii=False)
|
| 156 |
+
|
| 157 |
+
print(f"β
Augmented data saved to {output_json_path}")
|
| 158 |
+
return output_json_path
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# -------------------------
|
| 162 |
+
# Step 2: Dataset Class (Unchanged)
|
| 163 |
+
# -------------------------
|
| 164 |
+
class LayoutDataset(Dataset):
|
| 165 |
+
def __init__(self, json_path, tokenizer, label2id, max_len=512):
|
| 166 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
| 167 |
+
self.data = json.load(f)
|
| 168 |
+
self.tokenizer = tokenizer
|
| 169 |
+
self.label2id = label2id
|
| 170 |
+
self.max_len = max_len
|
| 171 |
+
|
| 172 |
+
def __len__(self):
|
| 173 |
+
return len(self.data)
|
| 174 |
+
|
| 175 |
+
def __getitem__(self, idx):
|
| 176 |
+
item = self.data[idx]
|
| 177 |
+
words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
|
| 178 |
+
|
| 179 |
+
# Tokenize
|
| 180 |
+
encodings = self.tokenizer(
|
| 181 |
+
words,
|
| 182 |
+
boxes=bboxes,
|
| 183 |
+
padding="max_length",
|
| 184 |
+
truncation=True,
|
| 185 |
+
max_length=self.max_len,
|
| 186 |
+
return_offsets_mapping=True,
|
| 187 |
+
return_tensors="pt"
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# Align labels to word pieces
|
| 191 |
+
word_ids = encodings.word_ids(batch_index=0)
|
| 192 |
+
label_ids = []
|
| 193 |
+
for word_id in word_ids:
|
| 194 |
+
if word_id is None:
|
| 195 |
+
label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
|
| 196 |
+
else:
|
| 197 |
+
label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
|
| 198 |
+
|
| 199 |
+
encodings.pop("offset_mapping")
|
| 200 |
+
encodings["labels"] = torch.tensor(label_ids)
|
| 201 |
+
|
| 202 |
+
return {key: val.squeeze(0) for key, val in encodings.items()}
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
# -------------------------
|
| 206 |
+
# Step 3: Model Architecture (Unchanged)
|
| 207 |
+
# -------------------------
|
| 208 |
+
class LayoutLMv3CRF(nn.Module):
|
| 209 |
+
def __init__(self, model_name, num_labels):
|
| 210 |
+
super().__init__()
|
| 211 |
+
self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
|
| 212 |
+
self.dropout = nn.Dropout(0.1)
|
| 213 |
+
self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
|
| 214 |
+
self.crf = CRF(num_labels)
|
| 215 |
+
|
| 216 |
+
def forward(self, input_ids, bbox, attention_mask, labels=None):
|
| 217 |
+
outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
|
| 218 |
+
sequence_output = self.dropout(outputs.last_hidden_state)
|
| 219 |
+
emissions = self.classifier(sequence_output)
|
| 220 |
+
|
| 221 |
+
if labels is not None:
|
| 222 |
+
# Training mode: calculate loss
|
| 223 |
+
log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
|
| 224 |
+
return -log_likelihood.mean()
|
| 225 |
+
else:
|
| 226 |
+
# Inference mode: decode best path
|
| 227 |
+
best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
|
| 228 |
+
return best_paths
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
# -------------------------
|
| 232 |
+
# Step 4: Training + Evaluation (Modified for Verbose Logging)
|
| 233 |
+
# -------------------------
|
| 234 |
+
def train_one_epoch(model, dataloader, optimizer, device):
|
| 235 |
+
model.train()
|
| 236 |
+
total_loss = 0
|
| 237 |
+
|
| 238 |
+
# Removed tqdm here to ensure cleaner log streaming to Gradio.
|
| 239 |
+
for batch_idx, batch in enumerate(dataloader):
|
| 240 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
| 241 |
+
labels = batch.pop("labels")
|
| 242 |
+
optimizer.zero_grad()
|
| 243 |
+
loss = model(**batch, labels=labels)
|
| 244 |
+
loss.backward()
|
| 245 |
+
optimizer.step()
|
| 246 |
+
total_loss += loss.item()
|
| 247 |
+
|
| 248 |
+
# VERBOSE LOGGING: Print batch progress every 5 batches to keep the Gradio connection alive
|
| 249 |
+
if (batch_idx + 1) % 5 == 0:
|
| 250 |
+
print(f"| Epoch Progress | Batch {batch_idx + 1}/{len(dataloader)} | Current Batch Loss: {loss.item():.4f}")
|
| 251 |
+
|
| 252 |
+
return total_loss / len(dataloader)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def evaluate(model, dataloader, device, id2label):
|
| 256 |
+
model.eval()
|
| 257 |
+
all_preds, all_labels = [], []
|
| 258 |
+
with torch.no_grad():
|
| 259 |
+
for batch in tqdm(dataloader, desc="Evaluating"):
|
| 260 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
| 261 |
+
labels = batch.pop("labels").cpu().numpy()
|
| 262 |
+
preds = model(**batch)
|
| 263 |
+
for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
|
| 264 |
+
valid = mask == 1
|
| 265 |
+
l = l[valid].tolist()
|
| 266 |
+
all_labels.extend(l)
|
| 267 |
+
all_preds.extend(p[:len(l)])
|
| 268 |
+
|
| 269 |
+
# Exclude the "O" label and other special tokens if necessary, but using 'micro' average
|
| 270 |
+
# on all valid tokens is typically fine for the initial evaluation.
|
| 271 |
+
precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
|
| 272 |
+
return precision, recall, f1
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
# -------------------------
|
| 276 |
+
# Step 5: Main Pipeline (Training) - MODIFIED LABELS
|
| 277 |
+
# -------------------------
|
| 278 |
+
def main(args):
|
| 279 |
+
# LABELS UPDATED: Added SECTION_HEADING and PASSAGE
|
| 280 |
+
labels = [
|
| 281 |
+
"O",
|
| 282 |
+
"B-QUESTION", "I-QUESTION",
|
| 283 |
+
"B-OPTION", "I-OPTION",
|
| 284 |
+
"B-ANSWER", "I-ANSWER",
|
| 285 |
+
"B-SECTION_HEADING", "I-SECTION_HEADING",
|
| 286 |
+
"B-PASSAGE", "I-PASSAGE"
|
| 287 |
+
]
|
| 288 |
+
label2id = {l: i for i, l in enumerate(labels)}
|
| 289 |
+
id2label = {i: l for l, i in label2id.items()}
|
| 290 |
+
|
| 291 |
+
# 1. Preprocess and save the initial training data
|
| 292 |
+
print("\n--- START PHASE: PREPROCESSING ---")
|
| 293 |
+
initial_bio_json = "training_data_bio_bboxes.json"
|
| 294 |
+
preprocess_labelstudio(args.input, initial_bio_json)
|
| 295 |
+
|
| 296 |
+
# 2. Augment the dataset with translated bboxes
|
| 297 |
+
print("\n--- START PHASE: AUGMENTATION ---")
|
| 298 |
+
augmented_bio_json = "augmented_training_data_bio_bboxes.json"
|
| 299 |
+
final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
|
| 300 |
+
|
| 301 |
+
# Clean up the intermediary file (optional)
|
| 302 |
+
# os.remove(initial_bio_json)
|
| 303 |
+
|
| 304 |
+
# 3. Load and split augmented dataset
|
| 305 |
+
print("\n--- START PHASE: MODEL/DATASET SETUP ---")
|
| 306 |
+
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
|
| 307 |
+
dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
|
| 308 |
+
val_size = int(0.2 * len(dataset))
|
| 309 |
+
train_size = len(dataset) - val_size
|
| 310 |
+
|
| 311 |
+
# Use a fixed seed for reproducibility in split
|
| 312 |
+
torch.manual_seed(42)
|
| 313 |
+
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
| 314 |
+
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
|
| 315 |
+
val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
|
| 316 |
+
print(f"Dataset split: Train samples: {train_size}, Validation samples: {val_size}")
|
| 317 |
+
|
| 318 |
+
# 4. Initialize and load model
|
| 319 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 320 |
+
print(f"Using device: {device}")
|
| 321 |
+
# Num_labels is based on the updated 'labels' list
|
| 322 |
+
model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
|
| 323 |
+
ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
|
| 324 |
+
os.makedirs("checkpoints", exist_ok=True)
|
| 325 |
+
if os.path.exists(ckpt_path):
|
| 326 |
+
# NOTE: Loading an old checkpoint will likely fail now because num_labels has changed,
|
| 327 |
+
# unless the old checkpoint had the *exact* same number of labels.
|
| 328 |
+
# It is recommended to start training from scratch.
|
| 329 |
+
# print(f"π Loading checkpoint from {ckpt_path}")
|
| 330 |
+
# model.load_state_dict(torch.load(ckpt_path, map_location=device))
|
| 331 |
+
print(f"β οΈ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
|
| 332 |
+
|
| 333 |
+
optimizer = AdamW(model.parameters(), lr=args.lr)
|
| 334 |
+
|
| 335 |
+
# 5. Training loop
|
| 336 |
+
for epoch in range(args.epochs):
|
| 337 |
+
print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
|
| 338 |
+
avg_loss = train_one_epoch(model, train_loader, optimizer, device)
|
| 339 |
+
|
| 340 |
+
print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
|
| 341 |
+
precision, recall, f1 = evaluate(model, val_loader, device, id2label)
|
| 342 |
+
|
| 343 |
+
print(
|
| 344 |
+
f"Epoch {epoch + 1}/{args.epochs} | Avg Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
|
| 345 |
+
torch.save(model.state_dict(), ckpt_path)
|
| 346 |
+
print(f"πΎ Model saved at {ckpt_path}")
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def run_inference(pdf_path, model_path, output_path):
|
| 350 |
+
# LABELS UPDATED: Added SECTION_HEADING and PASSAGE (Must match main)
|
| 351 |
+
labels = [
|
| 352 |
+
"O",
|
| 353 |
+
"B-QUESTION", "I-QUESTION",
|
| 354 |
+
"B-OPTION", "I-OPTION",
|
| 355 |
+
"B-ANSWER", "I-ANSWER",
|
| 356 |
+
"B-SECTION_HEADING", "I-SECTION_HEADING",
|
| 357 |
+
"B-PASSAGE", "I-PASSAGE"
|
| 358 |
+
]
|
| 359 |
+
label2id = {l: i for i, l in enumerate(labels)}
|
| 360 |
+
id2label = {i: l for l, i in label2id.items()}
|
| 361 |
+
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
|
| 362 |
+
|
| 363 |
+
# Load the trained model
|
| 364 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 365 |
+
model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
|
| 366 |
+
try:
|
| 367 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 368 |
+
except Exception as e:
|
| 369 |
+
print(
|
| 370 |
+
f"β Error loading model state: {e}. Ensure the model at {model_path} has been successfully trained with the new labels.")
|
| 371 |
+
return
|
| 372 |
+
|
| 373 |
+
model.eval()
|
| 374 |
+
|
| 375 |
+
# Process PDF with OCR
|
| 376 |
+
try:
|
| 377 |
+
doc = fitz.open(pdf_path)
|
| 378 |
+
except Exception as e:
|
| 379 |
+
print(f"β Error opening PDF: {e}")
|
| 380 |
+
return
|
| 381 |
+
|
| 382 |
+
all_predictions = []
|
| 383 |
+
tesseract_config = '--psm 6'
|
| 384 |
+
|
| 385 |
+
for page_num in range(len(doc)):
|
| 386 |
+
page = doc.load_page(page_num)
|
| 387 |
+
|
| 388 |
+
# Get a high-resolution image of the page for Tesseract
|
| 389 |
+
pix = page.get_pixmap(dpi=300)
|
| 390 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 391 |
+
|
| 392 |
+
# Get page dimensions from PyMuPDF
|
| 393 |
+
page_width, page_height = page.bound().width, page.bound().height
|
| 394 |
+
|
| 395 |
+
# Get OCR data (words and bboxes)
|
| 396 |
+
ocr_data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT, config=tesseract_config)
|
| 397 |
+
words = [word for word in ocr_data['text'] if word.strip()]
|
| 398 |
+
|
| 399 |
+
# Skip empty pages
|
| 400 |
+
if not words:
|
| 401 |
+
continue
|
| 402 |
+
|
| 403 |
+
# Get the scaling factors from the image resolution to the PDF's native resolution
|
| 404 |
+
x_scale = page_width / pix.width
|
| 405 |
+
y_scale = page_height / pix.height
|
| 406 |
+
|
| 407 |
+
# Create original pixel bboxes
|
| 408 |
+
bboxes_raw = [[
|
| 409 |
+
ocr_data['left'][i],
|
| 410 |
+
ocr_data['top'][i],
|
| 411 |
+
ocr_data['left'][i] + ocr_data['width'][i],
|
| 412 |
+
ocr_data['top'][i] + ocr_data['height'][i]
|
| 413 |
+
] for i in range(len(ocr_data['text'])) if ocr_data['text'][i].strip()]
|
| 414 |
+
|
| 415 |
+
# Normalize bboxes to 0-1000 scale using the correct scaling factors
|
| 416 |
+
normalized_bboxes = [[
|
| 417 |
+
int(1000 * (b[0] * x_scale) / page_width),
|
| 418 |
+
int(1000 * (b[1] * y_scale) / page_height),
|
| 419 |
+
int(1000 * (b[2] * x_scale) / page_width),
|
| 420 |
+
int(1000 * (b[3] * y_scale) / page_height)
|
| 421 |
+
] for b in bboxes_raw]
|
| 422 |
+
|
| 423 |
+
# Tokenize and run inference
|
| 424 |
+
inputs = tokenizer(words, boxes=normalized_bboxes, return_tensors="pt", truncation=True).to(device)
|
| 425 |
+
|
| 426 |
+
with torch.no_grad():
|
| 427 |
+
# The model is run on the normalized bboxes
|
| 428 |
+
preds = model(**inputs)
|
| 429 |
+
|
| 430 |
+
# Align predictions back to words
|
| 431 |
+
word_ids = inputs.word_ids(batch_index=0)
|
| 432 |
+
final_preds = []
|
| 433 |
+
previous_word_idx = None
|
| 434 |
+
for idx, word_id in enumerate(word_ids):
|
| 435 |
+
if word_id is not None and word_id != previous_word_idx:
|
| 436 |
+
# The model returns a list of predicted classes for each token
|
| 437 |
+
final_preds.append(id2label[preds[0][idx]])
|
| 438 |
+
previous_word_idx = word_id
|
| 439 |
+
|
| 440 |
+
# Prepare structured output
|
| 441 |
+
page_results = []
|
| 442 |
+
# Tesseract returns word list that is shorter than ocr_data if it contains empty strings.
|
| 443 |
+
# We need to use the cleaned 'words' list and its corresponding filtered bboxes.
|
| 444 |
+
# Note: We must ensure that the word and bbox lists passed to tokenizer and the filtered
|
| 445 |
+
# final_preds list are all correctly aligned with the original ocr_data indices.
|
| 446 |
+
# Since 'words' and 'bboxes_raw' are filtered exactly the same way (by word.strip()),
|
| 447 |
+
# and 'final_preds' is aligned back to 'words', we can zip them.
|
| 448 |
+
for word, bbox, label in zip(words, bboxes_raw, final_preds):
|
| 449 |
+
page_results.append({
|
| 450 |
+
"word": word,
|
| 451 |
+
"bbox": bbox,
|
| 452 |
+
"predicted_label": label
|
| 453 |
+
})
|
| 454 |
+
all_predictions.extend(page_results)
|
| 455 |
+
|
| 456 |
+
doc.close()
|
| 457 |
+
with open(output_path, "w") as f:
|
| 458 |
+
json.dump(all_predictions, f, indent=2, ensure_ascii=False)
|
| 459 |
+
print(f"β
Inference complete. Predictions saved to {output_path}")
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
# -------------------------
|
| 463 |
+
# Step 7: Main Execution (Unchanged)
|
| 464 |
+
# -------------------------
|
| 465 |
+
if __name__ == "__main__":
|
| 466 |
+
parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
|
| 467 |
+
parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
|
| 468 |
+
help="Select mode: 'train' or 'infer'")
|
| 469 |
+
parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
|
| 470 |
+
parser.add_argument("--batch_size", type=int, default=4)
|
| 471 |
+
parser.add_argument("--epochs", type=int, default=5)
|
| 472 |
+
parser.add_argument("--lr", type=float, default=5e-5)
|
| 473 |
+
parser.add_argument("--max_len", type=int, default=512)
|
| 474 |
+
args = parser.parse_args()
|
| 475 |
+
|
| 476 |
+
if args.mode == "train":
|
| 477 |
+
if not args.input:
|
| 478 |
+
parser.error("--input is required for 'train' mode.")
|
| 479 |
+
main(args)
|
| 480 |
+
elif args.mode == "infer":
|
| 481 |
+
if not args.input:
|
| 482 |
+
parser.error("--input is required for 'infer' mode.")
|
| 483 |
+
# NOTE: The model path here should ideally match the ckpt_path in main: checkpoints/layoutlmv3_crf_passage.pth
|
| 484 |
+
run_inference(args.input, "checkpoints/layoutlmv3_crf_new_passage.pth", "inference_predictions.json")
|