aagamjtdev commited on
Commit
ad55aeb
Β·
1 Parent(s): dc56cce
Files changed (1) hide show
  1. HF_LayoutLM_with_Passage.py +484 -0
HF_LayoutLM_with_Passage.py ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import argparse
3
+ import os
4
+ import random
5
+ import numpy as np
6
+ import torch
7
+ import torch.nn as nn
8
+ from torch.utils.data import Dataset, DataLoader, random_split
9
+ from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model
10
+ from TorchCRF import CRF
11
+ from torch.optim import AdamW
12
+ from tqdm import tqdm # Keep for evaluate
13
+ from sklearn.metrics import precision_recall_fscore_support
14
+ import fitz # PyMuPDF
15
+ import pytesseract
16
+ from PIL import Image
17
+ from pdf2image import convert_from_path
18
+
19
+ # --- Configuration for Augmentation ---
20
+ MAX_BBOX_DIMENSION = 999
21
+ MAX_SHIFT = 30
22
+ AUGMENTATION_FACTOR = 1
23
+
24
+
25
+ # -------------------------------------
26
+
27
+
28
+ # -------------------------
29
+ # Step 1: Preprocessing (Label Studio β†’ BIO + bboxes)
30
+ # -------------------------
31
+ def preprocess_labelstudio(input_path, output_path):
32
+ with open(input_path, "r", encoding="utf-8") as f:
33
+ data = json.load(f)
34
+
35
+ processed = []
36
+ total_items = len(data)
37
+ print(f"πŸ”„ Starting preprocessing of {total_items} documents...")
38
+
39
+ for i, item in enumerate(data):
40
+ words = item["data"]["original_words"]
41
+ bboxes = item["data"]["original_bboxes"]
42
+ labels = ["O"] * len(words)
43
+
44
+ if "annotations" in item:
45
+ for ann in item["annotations"]:
46
+ for res in ann["result"]:
47
+ # Check if the result item is a span annotation
48
+ if "value" in res and "labels" in res["value"]:
49
+ text = res["value"]["text"]
50
+ tag = res["value"]["labels"][0]
51
+ # Some tokenizers may split words, so we must find a consecutive word match.
52
+ text_tokens = text.split()
53
+
54
+ for j in range(len(words) - len(text_tokens) + 1):
55
+ if words[j:j + len(text_tokens)] == text_tokens:
56
+ labels[j] = f"B-{tag}"
57
+ for k in range(1, len(text_tokens)):
58
+ labels[j + k] = f"I-{tag}"
59
+ break # Move to next annotation if a match is found
60
+
61
+ processed.append({"tokens": words, "labels": labels, "bboxes": bboxes})
62
+
63
+ # --- HEARTBEAT LOGGING ---
64
+ if (i + 1) % 50 == 0:
65
+ print(f"--- HEARTBEAT: Preprocessed {i + 1}/{total_items} documents ---")
66
+ # -------------------------
67
+
68
+ print(f"βœ… Preprocessed data saved to {output_path}")
69
+ return output_path
70
+
71
+
72
+ # -------------------------
73
+ # Step 1.5: Bounding Box Augmentation
74
+ # -------------------------
75
+
76
+ def translate_bbox(bbox, shift_x, shift_y):
77
+ """
78
+ Translates a single bounding box [x_min, y_min, x_max, y_max] by (shift_x, shift_y)
79
+ and clamps the coordinates to the valid range [0, MAX_BBOX_DIMENSION].
80
+ """
81
+ x_min, y_min, x_max, y_max = bbox
82
+
83
+ new_x_min = x_min + shift_x
84
+ new_y_min = y_min + shift_y
85
+ new_x_max = x_max + shift_x
86
+ new_y_max = y_max + shift_y
87
+
88
+ # Clamp the new coordinates
89
+ new_x_min = max(0, min(new_x_min, MAX_BBOX_DIMENSION))
90
+ new_y_min = max(0, min(new_y_min, MAX_BBOX_DIMENSION))
91
+ new_x_max = max(0, min(new_x_max, MAX_BBOX_DIMENSION))
92
+ new_y_max = max(0, min(new_y_max, MAX_BBOX_DIMENSION))
93
+
94
+ # Safety check
95
+ if new_x_min > new_x_max: new_x_min = new_x_max
96
+ if new_y_min > new_y_max: new_y_min = new_y_max
97
+
98
+ return [new_x_min, new_y_min, new_x_max, new_y_max]
99
+
100
+
101
+ def augment_sample(sample):
102
+ """
103
+ Generates a new sample by translating all bounding boxes.
104
+ """
105
+ shift_x = random.randint(-MAX_SHIFT, MAX_SHIFT)
106
+ shift_y = random.randint(-MAX_SHIFT, MAX_SHIFT)
107
+
108
+ new_sample = sample.copy()
109
+
110
+ # Ensure tokens and labels are copied (they remain unchanged)
111
+ new_sample["tokens"] = sample["tokens"]
112
+ new_sample["labels"] = sample["labels"]
113
+
114
+ # Translate all bounding boxes
115
+ new_bboxes = [translate_bbox(bbox, shift_x, shift_y) for bbox in sample["bboxes"]]
116
+ new_sample["bboxes"] = new_bboxes
117
+
118
+ return new_sample
119
+
120
+
121
+ def augment_and_save_dataset(input_json_path, output_json_path):
122
+ """
123
+ Loads preprocessed data, performs augmentation, and saves the result.
124
+ """
125
+ print(f"πŸ”„ Loading preprocessed data from {input_json_path} for augmentation...")
126
+ with open(input_json_path, 'r', encoding="utf-8") as f:
127
+ training_data = json.load(f)
128
+
129
+ augmented_data = []
130
+ original_count = len(training_data)
131
+
132
+ print(f"πŸ”„ Starting augmentation (Factor: {AUGMENTATION_FACTOR}, {original_count} documents)...")
133
+
134
+ for i, original_sample in enumerate(training_data):
135
+ # 1. Add the original sample
136
+ augmented_data.append(original_sample)
137
+
138
+ # 2. Generate augmented samples
139
+ for _ in range(AUGMENTATION_FACTOR):
140
+ if "tokens" in original_sample and "labels" in original_sample and "bboxes" in original_sample:
141
+ augmented_data.append(augment_sample(original_sample))
142
+ else:
143
+ print(f"Warning: Skipping augmentation for sample {i} due to missing keys.")
144
+
145
+ # --- HEARTBEAT LOGGING ---
146
+ if (i + 1) % 50 == 0:
147
+ print(f"--- HEARTBEAT: Augmented {i + 1}/{original_count} original documents ---")
148
+ # -------------------------
149
+
150
+ augmented_count = len(augmented_data)
151
+ print(f"Dataset Augmentation: Original samples: {original_count}, Total samples: {augmented_count}")
152
+
153
+ # Save the augmented dataset
154
+ with open(output_json_path, 'w', encoding="utf-8") as f:
155
+ json.dump(augmented_data, f, indent=2, ensure_ascii=False)
156
+
157
+ print(f"βœ… Augmented data saved to {output_json_path}")
158
+ return output_json_path
159
+
160
+
161
+ # -------------------------
162
+ # Step 2: Dataset Class (Unchanged)
163
+ # -------------------------
164
+ class LayoutDataset(Dataset):
165
+ def __init__(self, json_path, tokenizer, label2id, max_len=512):
166
+ with open(json_path, "r", encoding="utf-8") as f:
167
+ self.data = json.load(f)
168
+ self.tokenizer = tokenizer
169
+ self.label2id = label2id
170
+ self.max_len = max_len
171
+
172
+ def __len__(self):
173
+ return len(self.data)
174
+
175
+ def __getitem__(self, idx):
176
+ item = self.data[idx]
177
+ words, bboxes, labels = item["tokens"], item["bboxes"], item["labels"]
178
+
179
+ # Tokenize
180
+ encodings = self.tokenizer(
181
+ words,
182
+ boxes=bboxes,
183
+ padding="max_length",
184
+ truncation=True,
185
+ max_length=self.max_len,
186
+ return_offsets_mapping=True,
187
+ return_tensors="pt"
188
+ )
189
+
190
+ # Align labels to word pieces
191
+ word_ids = encodings.word_ids(batch_index=0)
192
+ label_ids = []
193
+ for word_id in word_ids:
194
+ if word_id is None:
195
+ label_ids.append(self.label2id["O"]) # [CLS], [SEP], padding
196
+ else:
197
+ label_ids.append(self.label2id.get(labels[word_id], self.label2id["O"]))
198
+
199
+ encodings.pop("offset_mapping")
200
+ encodings["labels"] = torch.tensor(label_ids)
201
+
202
+ return {key: val.squeeze(0) for key, val in encodings.items()}
203
+
204
+
205
+ # -------------------------
206
+ # Step 3: Model Architecture (Unchanged)
207
+ # -------------------------
208
+ class LayoutLMv3CRF(nn.Module):
209
+ def __init__(self, model_name, num_labels):
210
+ super().__init__()
211
+ self.layoutlm = LayoutLMv3Model.from_pretrained(model_name)
212
+ self.dropout = nn.Dropout(0.1)
213
+ self.classifier = nn.Linear(self.layoutlm.config.hidden_size, num_labels)
214
+ self.crf = CRF(num_labels)
215
+
216
+ def forward(self, input_ids, bbox, attention_mask, labels=None):
217
+ outputs = self.layoutlm(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
218
+ sequence_output = self.dropout(outputs.last_hidden_state)
219
+ emissions = self.classifier(sequence_output)
220
+
221
+ if labels is not None:
222
+ # Training mode: calculate loss
223
+ log_likelihood = self.crf(emissions, labels, mask=attention_mask.bool())
224
+ return -log_likelihood.mean()
225
+ else:
226
+ # Inference mode: decode best path
227
+ best_paths = self.crf.viterbi_decode(emissions, mask=attention_mask.bool())
228
+ return best_paths
229
+
230
+
231
+ # -------------------------
232
+ # Step 4: Training + Evaluation (Modified for Verbose Logging)
233
+ # -------------------------
234
+ def train_one_epoch(model, dataloader, optimizer, device):
235
+ model.train()
236
+ total_loss = 0
237
+
238
+ # Removed tqdm here to ensure cleaner log streaming to Gradio.
239
+ for batch_idx, batch in enumerate(dataloader):
240
+ batch = {k: v.to(device) for k, v in batch.items()}
241
+ labels = batch.pop("labels")
242
+ optimizer.zero_grad()
243
+ loss = model(**batch, labels=labels)
244
+ loss.backward()
245
+ optimizer.step()
246
+ total_loss += loss.item()
247
+
248
+ # VERBOSE LOGGING: Print batch progress every 5 batches to keep the Gradio connection alive
249
+ if (batch_idx + 1) % 5 == 0:
250
+ print(f"| Epoch Progress | Batch {batch_idx + 1}/{len(dataloader)} | Current Batch Loss: {loss.item():.4f}")
251
+
252
+ return total_loss / len(dataloader)
253
+
254
+
255
+ def evaluate(model, dataloader, device, id2label):
256
+ model.eval()
257
+ all_preds, all_labels = [], []
258
+ with torch.no_grad():
259
+ for batch in tqdm(dataloader, desc="Evaluating"):
260
+ batch = {k: v.to(device) for k, v in batch.items()}
261
+ labels = batch.pop("labels").cpu().numpy()
262
+ preds = model(**batch)
263
+ for p, l, mask in zip(preds, labels, batch["attention_mask"].cpu().numpy()):
264
+ valid = mask == 1
265
+ l = l[valid].tolist()
266
+ all_labels.extend(l)
267
+ all_preds.extend(p[:len(l)])
268
+
269
+ # Exclude the "O" label and other special tokens if necessary, but using 'micro' average
270
+ # on all valid tokens is typically fine for the initial evaluation.
271
+ precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average="micro", zero_division=0)
272
+ return precision, recall, f1
273
+
274
+
275
+ # -------------------------
276
+ # Step 5: Main Pipeline (Training) - MODIFIED LABELS
277
+ # -------------------------
278
+ def main(args):
279
+ # LABELS UPDATED: Added SECTION_HEADING and PASSAGE
280
+ labels = [
281
+ "O",
282
+ "B-QUESTION", "I-QUESTION",
283
+ "B-OPTION", "I-OPTION",
284
+ "B-ANSWER", "I-ANSWER",
285
+ "B-SECTION_HEADING", "I-SECTION_HEADING",
286
+ "B-PASSAGE", "I-PASSAGE"
287
+ ]
288
+ label2id = {l: i for i, l in enumerate(labels)}
289
+ id2label = {i: l for l, i in label2id.items()}
290
+
291
+ # 1. Preprocess and save the initial training data
292
+ print("\n--- START PHASE: PREPROCESSING ---")
293
+ initial_bio_json = "training_data_bio_bboxes.json"
294
+ preprocess_labelstudio(args.input, initial_bio_json)
295
+
296
+ # 2. Augment the dataset with translated bboxes
297
+ print("\n--- START PHASE: AUGMENTATION ---")
298
+ augmented_bio_json = "augmented_training_data_bio_bboxes.json"
299
+ final_data_path = augment_and_save_dataset(initial_bio_json, augmented_bio_json)
300
+
301
+ # Clean up the intermediary file (optional)
302
+ # os.remove(initial_bio_json)
303
+
304
+ # 3. Load and split augmented dataset
305
+ print("\n--- START PHASE: MODEL/DATASET SETUP ---")
306
+ tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
307
+ dataset = LayoutDataset(final_data_path, tokenizer, label2id, max_len=args.max_len)
308
+ val_size = int(0.2 * len(dataset))
309
+ train_size = len(dataset) - val_size
310
+
311
+ # Use a fixed seed for reproducibility in split
312
+ torch.manual_seed(42)
313
+ train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
314
+ train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
315
+ val_loader = DataLoader(val_dataset, batch_size=args.batch_size)
316
+ print(f"Dataset split: Train samples: {train_size}, Validation samples: {val_size}")
317
+
318
+ # 4. Initialize and load model
319
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
320
+ print(f"Using device: {device}")
321
+ # Num_labels is based on the updated 'labels' list
322
+ model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
323
+ ckpt_path = "checkpoints/layoutlmv3_crf_passage.pth"
324
+ os.makedirs("checkpoints", exist_ok=True)
325
+ if os.path.exists(ckpt_path):
326
+ # NOTE: Loading an old checkpoint will likely fail now because num_labels has changed,
327
+ # unless the old checkpoint had the *exact* same number of labels.
328
+ # It is recommended to start training from scratch.
329
+ # print(f"πŸ”„ Loading checkpoint from {ckpt_path}")
330
+ # model.load_state_dict(torch.load(ckpt_path, map_location=device))
331
+ print(f"⚠️ Starting fresh training. Old checkpoint {ckpt_path} may be incompatible with new label count.")
332
+
333
+ optimizer = AdamW(model.parameters(), lr=args.lr)
334
+
335
+ # 5. Training loop
336
+ for epoch in range(args.epochs):
337
+ print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} TRAINING ---")
338
+ avg_loss = train_one_epoch(model, train_loader, optimizer, device)
339
+
340
+ print(f"\n--- START PHASE: EPOCH {epoch + 1}/{args.epochs} EVALUATION ---")
341
+ precision, recall, f1 = evaluate(model, val_loader, device, id2label)
342
+
343
+ print(
344
+ f"Epoch {epoch + 1}/{args.epochs} | Avg Loss: {avg_loss:.4f} | P: {precision:.3f} R: {recall:.3f} F1: {f1:.3f}")
345
+ torch.save(model.state_dict(), ckpt_path)
346
+ print(f"πŸ’Ύ Model saved at {ckpt_path}")
347
+
348
+
349
+ def run_inference(pdf_path, model_path, output_path):
350
+ # LABELS UPDATED: Added SECTION_HEADING and PASSAGE (Must match main)
351
+ labels = [
352
+ "O",
353
+ "B-QUESTION", "I-QUESTION",
354
+ "B-OPTION", "I-OPTION",
355
+ "B-ANSWER", "I-ANSWER",
356
+ "B-SECTION_HEADING", "I-SECTION_HEADING",
357
+ "B-PASSAGE", "I-PASSAGE"
358
+ ]
359
+ label2id = {l: i for i, l in enumerate(labels)}
360
+ id2label = {i: l for l, i in label2id.items()}
361
+ tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
362
+
363
+ # Load the trained model
364
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
365
+ model = LayoutLMv3CRF("microsoft/layoutlmv3-base", num_labels=len(labels)).to(device)
366
+ try:
367
+ model.load_state_dict(torch.load(model_path, map_location=device))
368
+ except Exception as e:
369
+ print(
370
+ f"❌ Error loading model state: {e}. Ensure the model at {model_path} has been successfully trained with the new labels.")
371
+ return
372
+
373
+ model.eval()
374
+
375
+ # Process PDF with OCR
376
+ try:
377
+ doc = fitz.open(pdf_path)
378
+ except Exception as e:
379
+ print(f"❌ Error opening PDF: {e}")
380
+ return
381
+
382
+ all_predictions = []
383
+ tesseract_config = '--psm 6'
384
+
385
+ for page_num in range(len(doc)):
386
+ page = doc.load_page(page_num)
387
+
388
+ # Get a high-resolution image of the page for Tesseract
389
+ pix = page.get_pixmap(dpi=300)
390
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
391
+
392
+ # Get page dimensions from PyMuPDF
393
+ page_width, page_height = page.bound().width, page.bound().height
394
+
395
+ # Get OCR data (words and bboxes)
396
+ ocr_data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT, config=tesseract_config)
397
+ words = [word for word in ocr_data['text'] if word.strip()]
398
+
399
+ # Skip empty pages
400
+ if not words:
401
+ continue
402
+
403
+ # Get the scaling factors from the image resolution to the PDF's native resolution
404
+ x_scale = page_width / pix.width
405
+ y_scale = page_height / pix.height
406
+
407
+ # Create original pixel bboxes
408
+ bboxes_raw = [[
409
+ ocr_data['left'][i],
410
+ ocr_data['top'][i],
411
+ ocr_data['left'][i] + ocr_data['width'][i],
412
+ ocr_data['top'][i] + ocr_data['height'][i]
413
+ ] for i in range(len(ocr_data['text'])) if ocr_data['text'][i].strip()]
414
+
415
+ # Normalize bboxes to 0-1000 scale using the correct scaling factors
416
+ normalized_bboxes = [[
417
+ int(1000 * (b[0] * x_scale) / page_width),
418
+ int(1000 * (b[1] * y_scale) / page_height),
419
+ int(1000 * (b[2] * x_scale) / page_width),
420
+ int(1000 * (b[3] * y_scale) / page_height)
421
+ ] for b in bboxes_raw]
422
+
423
+ # Tokenize and run inference
424
+ inputs = tokenizer(words, boxes=normalized_bboxes, return_tensors="pt", truncation=True).to(device)
425
+
426
+ with torch.no_grad():
427
+ # The model is run on the normalized bboxes
428
+ preds = model(**inputs)
429
+
430
+ # Align predictions back to words
431
+ word_ids = inputs.word_ids(batch_index=0)
432
+ final_preds = []
433
+ previous_word_idx = None
434
+ for idx, word_id in enumerate(word_ids):
435
+ if word_id is not None and word_id != previous_word_idx:
436
+ # The model returns a list of predicted classes for each token
437
+ final_preds.append(id2label[preds[0][idx]])
438
+ previous_word_idx = word_id
439
+
440
+ # Prepare structured output
441
+ page_results = []
442
+ # Tesseract returns word list that is shorter than ocr_data if it contains empty strings.
443
+ # We need to use the cleaned 'words' list and its corresponding filtered bboxes.
444
+ # Note: We must ensure that the word and bbox lists passed to tokenizer and the filtered
445
+ # final_preds list are all correctly aligned with the original ocr_data indices.
446
+ # Since 'words' and 'bboxes_raw' are filtered exactly the same way (by word.strip()),
447
+ # and 'final_preds' is aligned back to 'words', we can zip them.
448
+ for word, bbox, label in zip(words, bboxes_raw, final_preds):
449
+ page_results.append({
450
+ "word": word,
451
+ "bbox": bbox,
452
+ "predicted_label": label
453
+ })
454
+ all_predictions.extend(page_results)
455
+
456
+ doc.close()
457
+ with open(output_path, "w") as f:
458
+ json.dump(all_predictions, f, indent=2, ensure_ascii=False)
459
+ print(f"βœ… Inference complete. Predictions saved to {output_path}")
460
+
461
+
462
+ # -------------------------
463
+ # Step 7: Main Execution (Unchanged)
464
+ # -------------------------
465
+ if __name__ == "__main__":
466
+ parser = argparse.ArgumentParser(description="LayoutLMv3 Fine-tuning and Inference Script.")
467
+ parser.add_argument("--mode", type=str, required=True, choices=["train", "infer"],
468
+ help="Select mode: 'train' or 'infer'")
469
+ parser.add_argument("--input", type=str, help="Path to input file (Label Studio JSON for train, PDF for infer).")
470
+ parser.add_argument("--batch_size", type=int, default=4)
471
+ parser.add_argument("--epochs", type=int, default=5)
472
+ parser.add_argument("--lr", type=float, default=5e-5)
473
+ parser.add_argument("--max_len", type=int, default=512)
474
+ args = parser.parse_args()
475
+
476
+ if args.mode == "train":
477
+ if not args.input:
478
+ parser.error("--input is required for 'train' mode.")
479
+ main(args)
480
+ elif args.mode == "infer":
481
+ if not args.input:
482
+ parser.error("--input is required for 'infer' mode.")
483
+ # NOTE: The model path here should ideally match the ckpt_path in main: checkpoints/layoutlmv3_crf_passage.pth
484
+ run_inference(args.input, "checkpoints/layoutlmv3_crf_new_passage.pth", "inference_predictions.json")