backend_chatbot / app /api /v2_endpoints.py
helal94hb1's picture
fix: new embeddings and reranker3
504ddfc
# app/api/v2_endpoints.py
from fastapi.concurrency import run_in_threadpool
from fastapi import APIRouter, Depends, HTTPException, Body, status
from sqlalchemy.orm import Session
import logging
import time
import uuid
from datetime import datetime
from typing import Dict, Optional, Tuple, List, Any, Set
from app.core.config import settings
import numpy as np
# --- DB Imports ---
from app.db.database import get_db
from app.db import models
from app.db import schemas
# --- Service Imports ---
from app.services import data_loader
from app.services import retrieval
from app.services import context_builder
from app.services import llm_service
# --- ADDED: Import the new reranker service ---
from app.services import reranker_service
from app.services import parts_combination_service
from app.services import query_expansion_service
# --- State Import ---
from app.core import state
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
router = APIRouter()
# --- Constants ---
CONTEXT_CHUNK_COUNT = 100
# --- MODIFIED: TOTAL_RETRIEVAL_COUNT is now the number of candidates for the re-ranker ---
RERANK_CANDIDATE_COUNT = 100
def dynamic_top_k_selection(
reranked_docs: List[Dict[str, Any]],
k_min: int = 3,
k_max: int = 15,
fall_off_threshold: float = 1.0 # Start with a threshold of 1.0 logit score drop
) -> List[Dict[str, Any]]:
"""
Selects a dynamic number of documents based on score fall-off.
"""
if not reranked_docs:
return []
if len(reranked_docs) <= k_min:
return reranked_docs
scores = np.array([doc.get('rerank_score', -float('inf')) for doc in reranked_docs])
score_diffs = np.diff(scores) * -1 # Make differences positive as scores are descending
elbow_index = -1
# Start searching for a large fall-off after the k_min-th document
for i in range(k_min - 1, len(score_diffs)):
if score_diffs[i] > fall_off_threshold:
# The drop is after this document, so we take up to and including this one.
elbow_index = i + 1
break
if elbow_index != -1:
# We found a significant drop
final_k = elbow_index
else:
# No significant drop found, take the max allowed
final_k = k_max
# Ensure final_k is within the [k_min, k_max] bounds and also within list size
final_k = min(max(final_k, k_min), k_max, len(reranked_docs))
logger.info(f"Dynamic K selection: Found elbow at index {elbow_index}. "
f"Selected final K of {final_k} from {len(reranked_docs)} candidates.")
return reranked_docs[:final_k]
# --- Startup Event (Loads data into state) ---
@router.on_event("startup")
async def v2_load_data_on_startup():
"""Load data and models into the central state object on startup."""
if state.v2_data_loaded:
logger.info("V2 data already loaded in state. Skipping.")
return
logger.info("--- Starting V2 Data Loading Sequence ---")
start_time = time.time()
load_success = True
# Task 1: Load Retrieval Artifacts (Bi-encoder)
logger.info("Startup Task 1: Loading retrieval artifacts (embeddings, Wq, temp)...")
artifacts_loaded = retrieval.load_retrieval_artifacts()
if not artifacts_loaded:
logger.error("CRITICAL FAILURE: Failed to load retrieval artifacts.")
load_success = False
else:
logger.info("Retrieval artifacts loaded successfully.")
# Task 2: Load Content Map
if load_success:
logger.info("Startup Task 2: Loading Chunk Content Map...")
if state.chunk_ids_in_order is not None:
required_ids = set(state.chunk_ids_in_order)
loaded_content, loaded_metadata = await data_loader.load_chunk_content_map(
required_chunk_ids=required_ids
)
if loaded_content is None or loaded_metadata is None:
logger.error("CRITICAL FAILURE: Failed to load chunk content/metadata map.")
load_success = False
else:
state.chunk_content_map = loaded_content
state.chunk_metadata_map = loaded_metadata
logger.info(f"Chunk Content Map loading completed for {len(loaded_content)} chunks.")
else:
logger.warning("Skipping content loading due to artifact load failure.")
# Task 3: Initialize LLM Client
if load_success:
logger.info("Startup Task 3: Initializing OpenAI Client...")
client_initialized = llm_service.initialize_openai_client()
if not client_initialized:
load_success = False
logger.error("CRITICAL FAILURE: OpenAI client failed to initialize.")
else:
logger.info("OpenAI Client initialization completed.")
# --- ADDED: Startup Task 4: Load Re-ranker Model ---
if load_success:
logger.info("Startup Task 4: Loading Re-ranker Model...")
reranker_loaded = reranker_service.load_reranker_model()
if not reranker_loaded:
load_success = False
logger.error("CRITICAL FAILURE: Re-ranker model failed to initialize.")
else:
logger.info("Re-ranker model initialization completed.")
# --- END OF ADDITION ---
# ...
# --- ADDED: Startup Task 5: Load Chunk Type and Sequence Data ---
if load_success:
logger.info("Startup Task 5: Loading Chunk Type and Sequence Data...")
maps_loaded = await parts_combination_service.load_chunk_type_map()
if not maps_loaded:
logger.warning("WARNING: Chunk Type/Sequence data failed to load.")
else:
logger.info("Chunk Type and Sequence Data initialization completed.")
# ...
# Final status update
if load_success:
state.v2_data_loaded = True
duration = time.time() - start_time
logger.info(f"--- V2 Data Loading Sequence Complete. Duration: {duration:.2f} seconds ---")
else:
state.v2_data_loaded = False
duration = time.time() - start_time
logger.error(f"--- V2 Data Loading Sequence FAILED. Duration: {duration:.2f} seconds. ---")
@router.post(
"/query",
response_model=schemas.QueryResponse,
summary="Process a user query using V2 GNN retrieval",
tags=["Query"]
)
async def handle_v2_query(
request: schemas.QueryRequest = Body(...),
db: Session = Depends(get_db)
):
logger.info(f"Received V2 query (Attempt 1): '{request.query[:100]}...' for session: {request.session_id}")
start_time = time.time()
if not state.v2_data_loaded:
raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail="Service is not ready.")
# ... (session and user message creation remain the same) ...
session_uuid, _ = await get_or_create_session(request.session_id, db)
user_msg = models.ChatMessage(session_id=session_uuid, role=schemas.MessageRole.USER, content=request.query)
db.add(user_msg)
llm_answer = ""
context_string = ""
retrieved_chunk_ids = []
used_ids_this_attempt = []
retrieved_scores_float = []
top_result_preview = None
original_file = None
try:
# --- STEP 1: PRE-PROCESSING (Direct ABBREVIATION Replacement) ---
original_query = request.query
# --- EDIT: Call the new, direct replacement function ---
normalized_query = query_expansion_service.replace_abbreviations(original_query)
if original_query != normalized_query:
logger.info(f"Query expanded from '{original_query}' to '{normalized_query}'")
# --- MODIFIED: Offload the blocking retrieval function to a threadpool ---
search_results: List[Tuple[str, float]] = await run_in_threadpool(
retrieval.find_top_gnn_chunks,
query_text=normalized_query,
top_n=RERANK_CANDIDATE_COUNT
)
if not search_results:
llm_answer = "Based on the available information, I could not find a specific answer to your query."
else:
retrieved_chunk_ids = [str(chunk_id) for chunk_id, score in search_results]
retrieved_scores_float = [float(score) for chunk_id, score in search_results]
candidate_chunks = []
missing_chunk_count = 0
for chunk_id, initial_score in search_results:
chunk_text = state.chunk_content_map.get(str(chunk_id))
if chunk_text:
candidate_chunks.append({"id": str(chunk_id), "text": chunk_text})
else:
missing_chunk_count += 1
logger.warning(
f"Data consistency warning: Retrieved chunk_id '{chunk_id}' "
f"not found in the in-memory chunk_content_map."
)
# --- LOGGING POINT 2: After building the candidate list ---
logger.debug(
f"Successfully built {len(candidate_chunks)} candidate chunks for re-ranking. "
f"{missing_chunk_count} chunks were dropped due to missing text content."
)
# --- MODIFIED: Offload the blocking re-ranker function to a threadpool ---
reranked_chunks = await run_in_threadpool(
reranker_service.rerank_chunks,
query=normalized_query,
chunks=candidate_chunks,
metadata_map=state.chunk_metadata_map
)
if reranked_chunks:
filtered_chunks = dynamic_top_k_selection(
reranked_docs=reranked_chunks,
k_min=settings.RERANKER_K_MIN, # e.g., 3
k_max=settings.RERANKER_K_MAX, # e.g., 100
fall_off_threshold=settings.RERANKER_FALLOFF_THRESHOLD # e.g., 1.0
)
# score_threshold = settings.RERANKER_SCORE_THRESHOLD
# filtered_chunks = [c for c in reranked_chunks if c['rerank_score'] > score_threshold]
# if not filtered_chunks:
# logger.warning(f"No chunks met the score threshold of {score_threshold}. Using only the top-ranked chunk.")
# filtered_chunks = reranked_chunks[:1]
# --- MODIFIED: Offload the blocking sequence organization to a threadpool ---
organized_chunks = await run_in_threadpool(
parts_combination_service.organize_chunks_by_sequence,
chunks=filtered_chunks
)
final_chunks_for_context = organized_chunks[:CONTEXT_CHUNK_COUNT]
# --- This function is very fast, no threadpool needed ---
ids_for_final_context = [chunk['id'] for chunk in final_chunks_for_context]
context_string, used_ids_this_attempt = context_builder.build_context_from_ids(
top_chunk_ids=ids_for_final_context
)
if context_string:
# --- MODIFIED: Simply 'await' the now-async llm_service function ---
llm_answer = await llm_service.generate_answer(request.query, context_string)
else:
llm_answer = "I found relevant documents, but could not construct an answer."
top_result_preview = None
if reranked_chunks:
top_chunk = reranked_chunks[0]
top_metadata = state.chunk_metadata_map.get(top_chunk['id'], {})
top_result_preview = schemas.TopResultPreview(
id=top_chunk['id'],
score=float(top_chunk['rerank_score']),
content_preview=top_chunk['text'][:150],
original_file=top_metadata.get('original_file')
)
else:
llm_answer = "Could not re-rank the search results."
except Exception as e:
logger.exception(f"Unexpected error during query processing: {e}")
llm_answer = "⚠️ An unexpected error occurred."
if not llm_answer: llm_answer = "⚠️ Error: No response generated."
bot_msg = models.ChatMessage(
session_id=session_uuid, role=schemas.MessageRole.BOT, content=llm_answer,
original_query=request.query, retrieved_context_ids=retrieved_chunk_ids,
used_context_ids=used_ids_this_attempt, attempt_number=1,
cumulative_used_context_ids=used_ids_this_attempt
)
db.add(bot_msg)
try:
db.commit()
db.refresh(bot_msg)
bot_message_id = bot_msg.id
except Exception as e:
db.rollback(); logger.exception(f"DB commit failed: {e}")
raise HTTPException(status_code=500, detail="Failed to save conversation messages.")
response_details = schemas.QueryResultDetail(
session_id=session_uuid, message_id=bot_message_id, attempt_number=1,
retrieved_ids=retrieved_chunk_ids, search_scores=retrieved_scores_float, original_file=original_file
)
final_response = schemas.QueryResponse(
llm_answer=llm_answer, context_used_preview=context_string[:200] + "..." if context_string else "No context.",
top_result_preview=top_result_preview, details=response_details
)
end_time = time.time()
logger.info(f"V2 query (Attempt 1) processed in {end_time - start_time:.2f}s")
return final_response
async def get_or_create_session(session_id: Optional[uuid.UUID], db: Session) -> Tuple[uuid.UUID, bool]:
is_new = False
if session_id:
session = db.query(models.ChatSession).filter(models.ChatSession.id == session_id).first()
if not session:
session_id = uuid.uuid4()
is_new = True
else:
session_id = uuid.uuid4()
is_new = True
if is_new:
new_db_session = models.ChatSession(id=session_id, name=f"Session {str(session_id)[:8]}")
db.add(new_db_session)
return session_id, is_new
# --- Session Management Endpoints ---
@router.post("/sessions", response_model=schemas.ChatSession, status_code=status.HTTP_201_CREATED, summary="Create", tags=["Sessions"])
async def create_v2_session(session_create: schemas.SessionCreate, db: Session = Depends(get_db)):
logger.info(f"Creating new V2 session with name: '{session_create.name}'")
session_uuid = uuid.uuid4()
db_session = models.ChatSession(id=session_uuid, name=session_create.name)
try:
db.add(db_session); db.commit(); db.refresh(db_session)
logger.info(f"Successfully created session {db_session.id}")
return db_session
except Exception as e:
db.rollback(); logger.exception(f"Failed to create session: {e}")
raise HTTPException(status_code=500, detail="Failed to create session")
@router.get("/sessions", response_model=List[schemas.ChatSession], summary="List", tags=["Sessions"])
async def list_v2_sessions(skip: int = 0, limit: int = 100, db: Session = Depends(get_db)):
logger.info(f"Listing V2 sessions (skip={skip}, limit={limit})")
sessions = db.query(models.ChatSession).order_by(models.ChatSession.created_at.desc()).offset(skip).limit(limit).all()
return sessions
@router.patch("/sessions/{session_id}", response_model=schemas.ChatSession, summary="Rename", tags=["Sessions"])
async def rename_v2_session(session_id: uuid.UUID, session_update: schemas.ChatSessionUpdate, db: Session = Depends(get_db)):
logger.info(f"Attempting to rename session {session_id} to '{session_update.name}'")
db_session = db.query(models.ChatSession).filter(models.ChatSession.id == session_id).first()
if not db_session: raise HTTPException(status_code=404, detail="Session not found")
db_session.name = session_update.name
try:
db.add(db_session); db.commit(); db.refresh(db_session)
logger.info(f"Successfully renamed session {session_id}")
return db_session
except Exception as e:
db.rollback(); logger.exception(f"Failed to rename session: {e}")
raise HTTPException(status_code=500, detail="Failed to rename session")
# --- Message Retrieval Endpoint ---
@router.get("/sessions/{session_id}/messages", response_model=List[schemas.ChatMessage], summary="Get Messages", tags=["Messages"])
async def get_v2_session_messages(session_id: uuid.UUID, db: Session = Depends(get_db)):
logger.info(f"Fetching messages for V2 session: {session_id}")
session = db.query(models.ChatSession).filter(models.ChatSession.id == session_id).first()
if not session: raise HTTPException(status_code=404, detail="Session not found")
messages = db.query(models.ChatMessage).filter(models.ChatMessage.session_id == session_id).order_by(models.ChatMessage.created_at.asc()).all()
logger.info(f"Found {len(messages)} messages for session {session_id}.")
return messages
# --- Feedback Endpoint ---
@router.post(
"/feedback",
response_model=schemas.RegeneratedResponse | schemas.FeedbackLogResponse,
summary="Submit/Update feedback and potentially regenerate response",
tags=["Feedback"]
)
async def submit_feedback(
feedback_data: schemas.FeedbackCreate = Body(...),
db: Session = Depends(get_db)
):
logger.info(f"Received feedback submission for message_id: {feedback_data.message_id}, type: {feedback_data.feedback_type.value}")
rated_message = db.query(models.ChatMessage).filter(models.ChatMessage.id == feedback_data.message_id).first()
if not rated_message: raise HTTPException(status_code=404, detail="Message not found")
db_feedback = db.query(models.FeedbackLog).filter(models.FeedbackLog.message_id == feedback_data.message_id).first()
if db_feedback:
db_feedback.feedback_type = feedback_data.feedback_type
db_feedback.feedback_comment = feedback_data.feedback_comment
else:
db_feedback = models.FeedbackLog(**feedback_data.dict())
db.add(db_feedback)
db.commit()
db.refresh(db_feedback)
if feedback_data.feedback_type == schemas.FeedbackTypeEnum.REJECT:
# Regeneration logic would go here if needed
pass
return db_feedback