Spaces:
Runtime error
Runtime error
Commit
·
2c2527f
1
Parent(s):
5d485e5
everything in expanders
Browse files
app.py
CHANGED
|
@@ -111,19 +111,24 @@ class Visualization:
|
|
| 111 |
self.docs = self.docs_checkpoint
|
| 112 |
|
| 113 |
def set_title(self):
|
| 114 |
-
st.title(f"
|
| 115 |
|
| 116 |
@staticmethod
|
| 117 |
def plot_hist(dataframe, key, num_bins=50):
|
| 118 |
-
checkbox = st.checkbox(
|
|
|
|
|
|
|
| 119 |
if checkbox:
|
| 120 |
fig, ax = plt.subplots()
|
| 121 |
val = dataframe[key[0]].values
|
| 122 |
if np.median(val) != 0:
|
| 123 |
-
val = val[
|
|
|
|
|
|
|
|
|
|
| 124 |
ax.hist(val, bins=num_bins, density=True)
|
| 125 |
ax.set_title(" ".join(key[0].split("_")))
|
| 126 |
-
ax.axvline(x=key[1], color=
|
| 127 |
st.pyplot(fig)
|
| 128 |
|
| 129 |
def filtering_of_docs(self):
|
|
@@ -273,9 +278,7 @@ class Visualization:
|
|
| 273 |
with st.sidebar.expander("Perplexity score"):
|
| 274 |
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
|
| 275 |
max_pp = int(np.max(self.docs["perplexity_score"])) + 1
|
| 276 |
-
cutoff_perplexity_score = st.slider(
|
| 277 |
-
cutoff_def, 0, max_pp, max_pp
|
| 278 |
-
)
|
| 279 |
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
| 280 |
keys.append(new_key)
|
| 281 |
Visualization.plot_hist(self.docs, new_key)
|
|
@@ -291,80 +294,96 @@ class Visualization:
|
|
| 291 |
all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
|
| 292 |
all_conds = np.all(all_conds, axis=0)
|
| 293 |
|
| 294 |
-
st.
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)"
|
| 300 |
)
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
)
|
| 304 |
-
st.dataframe(displayed_docs)
|
| 305 |
|
| 306 |
-
|
|
|
|
| 307 |
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
|
|
|
|
|
|
| 312 |
|
| 313 |
-
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
|
| 353 |
-
|
| 354 |
-
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
| 355 |
-
display_dataset(
|
| 356 |
-
cond_filter,
|
| 357 |
-
"Discarded documents for the filter on the language identification confidence score",
|
| 358 |
-
)
|
| 359 |
|
| 360 |
-
|
| 361 |
-
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
| 362 |
-
display_dataset(
|
| 363 |
-
cond_filter,
|
| 364 |
-
"Discarded documents for the filter on the perplexity score",
|
| 365 |
-
)
|
| 366 |
|
| 367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
def filtering_of_words(self):
|
| 370 |
if not (self.words is None):
|
|
@@ -386,32 +405,39 @@ class Visualization:
|
|
| 386 |
|
| 387 |
cond_words = self.words["len_word"] <= cutoff_word
|
| 388 |
if incorrect_substrings:
|
| 389 |
-
cond_words = cond_words & np.invert(
|
|
|
|
|
|
|
| 390 |
|
| 391 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
|
| 416 |
def download_parameters(self):
|
| 417 |
st.sidebar.subheader("Download parameters")
|
|
@@ -421,6 +447,7 @@ class Visualization:
|
|
| 421 |
file_name=f"parameters_{self.lang_dataset_id}.json",
|
| 422 |
)
|
| 423 |
|
|
|
|
| 424 |
def plot_zipf_law(self):
|
| 425 |
if not (self.words is None):
|
| 426 |
st.header("Zipf's Law")
|
|
@@ -441,144 +468,136 @@ class Visualization:
|
|
| 441 |
ax.set_xlabel("$i$-th most frequent word")
|
| 442 |
ax.set_ylabel("frequency in the documents")
|
| 443 |
st.pyplot(fig)
|
|
|
|
| 444 |
|
| 445 |
def analyse_personal_doc(self):
|
| 446 |
-
st.
|
|
|
|
| 447 |
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
|
| 454 |
-
|
| 455 |
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
|
| 462 |
-
|
| 463 |
|
| 464 |
-
|
| 465 |
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
)
|
| 474 |
-
if key[2]:
|
| 475 |
-
st.markdown(f"Number of words: {len(words)}")
|
| 476 |
-
if is_doc_discarded(key, len(words)):
|
| 477 |
-
is_discarded = True
|
| 478 |
-
|
| 479 |
-
elif key[0] == "repetitions_ratio":
|
| 480 |
-
repetitions_ratio = Filtering.compute_repetitions_ratio(
|
| 481 |
-
personal_doc, int(key[3])
|
| 482 |
-
)
|
| 483 |
-
repetitions_ratio = round(repetitions_ratio, 3)
|
| 484 |
-
st.markdown(f"Repetitions ratio: {repetitions_ratio}")
|
| 485 |
-
if is_doc_discarded(key, repetitions_ratio):
|
| 486 |
-
is_discarded = True
|
| 487 |
-
|
| 488 |
-
elif key[0] == "special_characters_ratio":
|
| 489 |
-
special_characters_ratio = (
|
| 490 |
-
Filtering.compute_special_characters_ratio(
|
| 491 |
-
personal_doc, self.param["special_characters"]
|
| 492 |
)
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
|
| 571 |
def visualization(self):
|
| 572 |
-
self.warning_preamble()
|
| 573 |
self.preamble()
|
| 574 |
self.open_data()
|
| 575 |
self.set_title()
|
| 576 |
self.filtering_of_docs()
|
| 577 |
self.filtering_of_words()
|
| 578 |
self.download_parameters()
|
| 579 |
-
# self.plot_zipf_law()
|
| 580 |
self.analyse_personal_doc()
|
| 581 |
-
self.download_data()
|
| 582 |
|
| 583 |
|
| 584 |
path_instructions = "./explanation_filtering_pipeline.pdf"
|
|
|
|
| 111 |
self.docs = self.docs_checkpoint
|
| 112 |
|
| 113 |
def set_title(self):
|
| 114 |
+
st.title(f"Filtering visualization")
|
| 115 |
|
| 116 |
@staticmethod
|
| 117 |
def plot_hist(dataframe, key, num_bins=50):
|
| 118 |
+
checkbox = st.checkbox(
|
| 119 |
+
"Diplay distribution", value=True, key=f"display_distribution_{key[0]}"
|
| 120 |
+
)
|
| 121 |
if checkbox:
|
| 122 |
fig, ax = plt.subplots()
|
| 123 |
val = dataframe[key[0]].values
|
| 124 |
if np.median(val) != 0:
|
| 125 |
+
val = val[
|
| 126 |
+
abs(val - np.median(val))
|
| 127 |
+
< 9 * np.median(np.absolute(val - np.median(val)))
|
| 128 |
+
]
|
| 129 |
ax.hist(val, bins=num_bins, density=True)
|
| 130 |
ax.set_title(" ".join(key[0].split("_")))
|
| 131 |
+
ax.axvline(x=key[1], color="r", linestyle="dashed")
|
| 132 |
st.pyplot(fig)
|
| 133 |
|
| 134 |
def filtering_of_docs(self):
|
|
|
|
| 278 |
with st.sidebar.expander("Perplexity score"):
|
| 279 |
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
|
| 280 |
max_pp = int(np.max(self.docs["perplexity_score"])) + 1
|
| 281 |
+
cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp)
|
|
|
|
|
|
|
| 282 |
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
| 283 |
keys.append(new_key)
|
| 284 |
Visualization.plot_hist(self.docs, new_key)
|
|
|
|
| 294 |
all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
|
| 295 |
all_conds = np.all(all_conds, axis=0)
|
| 296 |
|
| 297 |
+
with st.expander(
|
| 298 |
+
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
| 299 |
+
):
|
| 300 |
+
st.header(
|
| 301 |
+
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
|
|
|
| 302 |
)
|
| 303 |
+
|
| 304 |
+
def display_dataset(cond, description):
|
| 305 |
+
displayed_docs = self.docs.loc[cond]
|
| 306 |
+
st.subheader(
|
| 307 |
+
f"{description}: {len(displayed_docs)} docs ({len(displayed_docs) / self.num_docs * 100:.2f}%)"
|
| 308 |
+
)
|
| 309 |
+
st.markdown(
|
| 310 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 311 |
+
)
|
| 312 |
+
st.dataframe(displayed_docs)
|
| 313 |
+
|
| 314 |
+
display_dataset(np.invert(all_conds), "Discarded documents")
|
| 315 |
+
|
| 316 |
+
# st.subheader("Display discarded documents by filter")
|
| 317 |
+
display_discarded_documents_by_filter = st.checkbox(
|
| 318 |
+
"Display discarded documents by filter"
|
| 319 |
)
|
|
|
|
| 320 |
|
| 321 |
+
if display_discarded_documents_by_filter:
|
| 322 |
+
columns = list(self.docs)
|
| 323 |
|
| 324 |
+
if "number_words" in columns:
|
| 325 |
+
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
| 326 |
+
display_dataset(
|
| 327 |
+
cond_filter,
|
| 328 |
+
"Discarded documents for the filter on the number of words",
|
| 329 |
+
)
|
| 330 |
|
| 331 |
+
if "repetitions_ratio" in columns:
|
| 332 |
+
cond_filter = np.invert(np.all(conds["repetitions_ratio"], axis=0))
|
| 333 |
+
display_dataset(
|
| 334 |
+
cond_filter,
|
| 335 |
+
"Discarded documents for the filter on the repetitions ratio",
|
| 336 |
+
)
|
| 337 |
|
| 338 |
+
if "special_characters_ratio" in columns:
|
| 339 |
+
cond_filter = np.invert(
|
| 340 |
+
np.all(conds["special_characters_ratio"], axis=0)
|
| 341 |
+
)
|
| 342 |
+
display_dataset(
|
| 343 |
+
cond_filter,
|
| 344 |
+
"Discarded documents for the filter on the special characters ratio",
|
| 345 |
+
)
|
| 346 |
|
| 347 |
+
if "stopwords_ratio" in columns:
|
| 348 |
+
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
| 349 |
+
display_dataset(
|
| 350 |
+
cond_filter,
|
| 351 |
+
"Discarded documents for the filter on the stop words ratio",
|
| 352 |
+
)
|
| 353 |
|
| 354 |
+
if "flagged_words_ratio" in columns:
|
| 355 |
+
cond_filter = np.invert(
|
| 356 |
+
np.all(conds["flagged_words_ratio"], axis=0)
|
| 357 |
+
)
|
| 358 |
+
display_dataset(
|
| 359 |
+
cond_filter,
|
| 360 |
+
"Discarded documents for the filter on the flagged words ratio",
|
| 361 |
+
)
|
| 362 |
|
| 363 |
+
if "lang_id_score" in columns:
|
| 364 |
+
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
| 365 |
+
display_dataset(
|
| 366 |
+
cond_filter,
|
| 367 |
+
"Discarded documents for the filter on the language identification confidence score",
|
| 368 |
+
)
|
| 369 |
|
| 370 |
+
if "perplexity_score" in columns:
|
| 371 |
+
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
| 372 |
+
display_dataset(
|
| 373 |
+
cond_filter,
|
| 374 |
+
"Discarded documents for the filter on the perplexity score",
|
| 375 |
+
)
|
| 376 |
|
| 377 |
+
display_dataset(all_conds, "Retained documents")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
|
| 379 |
+
st.header("Download data")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
+
with open(self.path_data) as json_file:
|
| 382 |
+
btn = st.download_button(
|
| 383 |
+
label="Download data as json",
|
| 384 |
+
data=json_file,
|
| 385 |
+
file_name="data.json",
|
| 386 |
+
)
|
| 387 |
|
| 388 |
def filtering_of_words(self):
|
| 389 |
if not (self.words is None):
|
|
|
|
| 405 |
|
| 406 |
cond_words = self.words["len_word"] <= cutoff_word
|
| 407 |
if incorrect_substrings:
|
| 408 |
+
cond_words = cond_words & np.invert(
|
| 409 |
+
self.words["incorrect_substring"]
|
| 410 |
+
)
|
| 411 |
|
| 412 |
+
with st.expander(
|
| 413 |
+
f"Filtering on words, for {self.num_docs} {self.lang} documents"
|
| 414 |
+
):
|
| 415 |
+
st.header(
|
| 416 |
+
f"Filtering on words, for {self.num_docs} {self.lang} documents"
|
| 417 |
+
)
|
| 418 |
|
| 419 |
+
st.markdown(
|
| 420 |
+
f"Since the number of words is way larger than the number of documents, "
|
| 421 |
+
f"we consider in this section words for the first {self.num_docs_for_words} documents only."
|
| 422 |
+
)
|
| 423 |
|
| 424 |
+
discarded_words = self.words.loc[np.invert(cond_words)]
|
| 425 |
+
st.subheader(
|
| 426 |
+
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
|
| 427 |
+
)
|
| 428 |
+
st.markdown(
|
| 429 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 430 |
+
)
|
| 431 |
+
st.dataframe(discarded_words)
|
| 432 |
|
| 433 |
+
retained_words = self.words.loc[cond_words]
|
| 434 |
+
st.subheader(
|
| 435 |
+
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
|
| 436 |
+
)
|
| 437 |
+
st.markdown(
|
| 438 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 439 |
+
)
|
| 440 |
+
st.dataframe(retained_words)
|
| 441 |
|
| 442 |
def download_parameters(self):
|
| 443 |
st.sidebar.subheader("Download parameters")
|
|
|
|
| 447 |
file_name=f"parameters_{self.lang_dataset_id}.json",
|
| 448 |
)
|
| 449 |
|
| 450 |
+
"""
|
| 451 |
def plot_zipf_law(self):
|
| 452 |
if not (self.words is None):
|
| 453 |
st.header("Zipf's Law")
|
|
|
|
| 468 |
ax.set_xlabel("$i$-th most frequent word")
|
| 469 |
ax.set_ylabel("frequency in the documents")
|
| 470 |
st.pyplot(fig)
|
| 471 |
+
"""
|
| 472 |
|
| 473 |
def analyse_personal_doc(self):
|
| 474 |
+
with st.expander("Analyse your own document"):
|
| 475 |
+
st.header("Analyse your own document")
|
| 476 |
|
| 477 |
+
personal_doc = st.text_area(
|
| 478 |
+
label="Paste here the document you want to analyse",
|
| 479 |
+
value="",
|
| 480 |
+
max_chars=10000,
|
| 481 |
+
)
|
| 482 |
|
| 483 |
+
is_discarded = False
|
| 484 |
|
| 485 |
+
def is_doc_discarded(key, score):
|
| 486 |
+
if key[2]: # max cutoff
|
| 487 |
+
return score > key[1]
|
| 488 |
+
else:
|
| 489 |
+
return score < key[1]
|
| 490 |
|
| 491 |
+
if personal_doc:
|
| 492 |
|
| 493 |
+
st.markdown("Statistics of the document:")
|
| 494 |
|
| 495 |
+
for key in self.keys:
|
| 496 |
+
if key[0] == "number_words":
|
| 497 |
+
words = ModifyingDocuments.get_words_from_document(
|
| 498 |
+
personal_doc,
|
| 499 |
+
self.sentencepiece_model_tok,
|
| 500 |
+
lower_case=False,
|
| 501 |
+
strip_characters=self.param["strip_characters"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
)
|
| 503 |
+
if key[2]:
|
| 504 |
+
st.markdown(f"Number of words: {len(words)}")
|
| 505 |
+
if is_doc_discarded(key, len(words)):
|
| 506 |
+
is_discarded = True
|
| 507 |
+
|
| 508 |
+
elif key[0] == "repetitions_ratio":
|
| 509 |
+
repetitions_ratio = Filtering.compute_repetitions_ratio(
|
| 510 |
+
personal_doc, int(key[3])
|
| 511 |
+
)
|
| 512 |
+
repetitions_ratio = round(repetitions_ratio, 3)
|
| 513 |
+
st.markdown(f"Repetitions ratio: {repetitions_ratio}")
|
| 514 |
+
if is_doc_discarded(key, repetitions_ratio):
|
| 515 |
+
is_discarded = True
|
| 516 |
+
|
| 517 |
+
elif key[0] == "special_characters_ratio":
|
| 518 |
+
special_characters_ratio = (
|
| 519 |
+
Filtering.compute_special_characters_ratio(
|
| 520 |
+
personal_doc, self.param["special_characters"]
|
| 521 |
+
)
|
| 522 |
+
)
|
| 523 |
+
special_characters_ratio = round(special_characters_ratio, 3)
|
| 524 |
+
st.markdown(
|
| 525 |
+
f"Special characters ratio: {special_characters_ratio}"
|
| 526 |
+
)
|
| 527 |
+
if is_doc_discarded(key, special_characters_ratio):
|
| 528 |
+
is_discarded = True
|
| 529 |
+
|
| 530 |
+
elif key[0] == "stopwords_ratio":
|
| 531 |
+
stopwords_ratio = Filtering.compute_stopwords_ratio(
|
| 532 |
+
personal_doc,
|
| 533 |
+
self.sentencepiece_model_tok,
|
| 534 |
+
self.param["strip_characters"],
|
| 535 |
+
self.param["cond_words_augmentation"],
|
| 536 |
+
self.param["words_augmentation_group_sizes"],
|
| 537 |
+
self.param["words_augmentation_join_char"],
|
| 538 |
+
self.stopwords,
|
| 539 |
+
)
|
| 540 |
+
stopwords_ratio = round(stopwords_ratio, 3)
|
| 541 |
+
st.markdown(f"Stop words ratio: {stopwords_ratio}")
|
| 542 |
+
if is_doc_discarded(key, stopwords_ratio):
|
| 543 |
+
is_discarded = True
|
| 544 |
+
|
| 545 |
+
elif key[0] == "flagged_words_ratio":
|
| 546 |
+
flagged_words_ratio = Filtering.compute_flagged_words_ratio(
|
| 547 |
+
personal_doc,
|
| 548 |
+
self.sentencepiece_model_tok,
|
| 549 |
+
self.param["strip_characters"],
|
| 550 |
+
self.param["cond_words_augmentation"],
|
| 551 |
+
self.param["words_augmentation_group_sizes"],
|
| 552 |
+
self.param["words_augmentation_join_char"],
|
| 553 |
+
self.flagged_words,
|
| 554 |
+
)
|
| 555 |
+
flagged_words_ratio = round(flagged_words_ratio, 3)
|
| 556 |
+
st.markdown(f"Flagged words ratio: {flagged_words_ratio}")
|
| 557 |
+
if is_doc_discarded(key, flagged_words_ratio):
|
| 558 |
+
is_discarded = True
|
| 559 |
+
|
| 560 |
+
elif key[0] == "lang_id_score":
|
| 561 |
+
(
|
| 562 |
+
lang_pred_dataset_id,
|
| 563 |
+
lang_id_score,
|
| 564 |
+
) = Filtering.compute_lang_id_pred_score(
|
| 565 |
+
personal_doc, self.model_lang_id
|
| 566 |
+
)
|
| 567 |
+
lang_id_score = round(lang_id_score, 3)
|
| 568 |
+
st.markdown(
|
| 569 |
+
f"Language identification confidence score: {lang_id_score}"
|
| 570 |
+
)
|
| 571 |
+
if is_doc_discarded(key, flagged_words_ratio) or (
|
| 572 |
+
self.lang_dataset_id != lang_pred_dataset_id
|
| 573 |
+
):
|
| 574 |
+
is_discarded = True
|
| 575 |
+
|
| 576 |
+
elif key[0] == "perplexity_score":
|
| 577 |
+
perplexity_score = Filtering.compute_perplexity_score(
|
| 578 |
+
personal_doc,
|
| 579 |
+
self.sentencepiece_model,
|
| 580 |
+
self.kenlm_model,
|
| 581 |
+
)
|
| 582 |
+
perplexity_score = round(perplexity_score, 3)
|
| 583 |
+
st.markdown(f"Perplexity score: {perplexity_score}")
|
| 584 |
+
if is_doc_discarded(key, perplexity_score):
|
| 585 |
+
is_discarded = True
|
| 586 |
+
|
| 587 |
+
is_discarded = "" if is_discarded else "not "
|
| 588 |
+
st.markdown(
|
| 589 |
+
f"With the current filtering parameters, this document **is {is_discarded}discarded**."
|
| 590 |
+
)
|
| 591 |
|
| 592 |
def visualization(self):
|
| 593 |
+
# self.warning_preamble()
|
| 594 |
self.preamble()
|
| 595 |
self.open_data()
|
| 596 |
self.set_title()
|
| 597 |
self.filtering_of_docs()
|
| 598 |
self.filtering_of_words()
|
| 599 |
self.download_parameters()
|
|
|
|
| 600 |
self.analyse_personal_doc()
|
|
|
|
| 601 |
|
| 602 |
|
| 603 |
path_instructions = "./explanation_filtering_pipeline.pdf"
|